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The use of two different techniques for the analydivibration signals, whose carrier harmo-
nics are modulated by high-frequency narrow-bamdioan processes is discussed. Periodically
non-stationary random processes (PNRP) are suitatxdizls for description of vibration signals
of damaged mechanism. A proposed processing tashrtgn be considered as an alternative
to squared envelope analysis, kurtosis technicgepgred envelope spectrum and its use in the
analysis of a vibration signal is discussed. #tiewn that the spectral estimates obtained by the
envelope square method are biased and inconsistenipossibility of obtaining of the unbiased
estimates by the PNVP method even for a signakmaito equal to 0.07 has been demonstrated.
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IMponeMoHCTPOBaHO BHKOPUCTAHHS JBOX PI3HUX METOMAIB — HNEPIOAUYHO HECTAIiOHAPHHUX BHU-
naaxoBux npouecie (ITHBII) Ta kBagpara OrMHAI0YO1 IS aHAJIi3y pealibHUX BiOpalidHUX CHUr-
HaJIB, HECy4i TapMOHIKM SKHX MOIYJIOIOTBCS B3a€MOCTAIIOHAPHUMH BHCOKOYACTOTHHMH
BY3bKOCMYTroBUMH BumnaakoBumu nporecamu. ITHBII € agekBaTHUMH MOZEISIMH AN OIHCY
CHUTHAJIB BiOpalil MOIIKOKEHOr0 MeXaHi3My. Y HepIINX HAyKOBUX IIPalsiX OCHOBHUM iHCTPY-
MEHTOM BUSBIICHHS HECIIPABHOCTEH OyB METO/ aHali3y KBaJpaTa OrMHAI04O], IKHii BUKOPUCTO-
ByloTh jpotenep. HaBenena meroquka [THBII-ananizy curHanmy € aJpbTepHATHBOIO JO METOLY
aHAJI3y KBaApaTa OTMHAIOYO] Ta METONY CIEKTPAJbHOIO eKcuecy. UHCIIeHHI pe3ynbTaT, OT-
pUMaHi OULIXOM 00pOOKH pealbHHX BiOpalidiHUX CUTHAMIB, MiATBEPIMIM e()EKTHBHICTH L€l
MOZeNi JUIsl OIIMCY caMe THX XapaKTepHCTHK BiOpamii, ki € CyTTEBUMH Ul BUPIIICHHS 3a1ad
JiarHOCTHKH. Benuuauny, siki OMHCYIOTh NEPioANYHY CTPYKTYPY MOMEHTHUX (YHKIIH epmoro
Ta apyroro nopsiukis ast mogeni ITHBII, € cumnromarrnaaumu utst BUSIBIIEHHS Ie(DeKTiB, y T.4. 1
Ha MMOYAaTKOBUX CTaisX X PO3BHUTKY. 3B’A30K MiX aHaTi30BaHUMH IiJXOJaMH CXEMAaTHIHO 00-
TOBOPIOBABCS, IIPOTE CIIiJl 3BEPHYTH yBary Ha IXHIO Pi3HY METO/OJIOTIYHY OCHOBY, ILI0 3yMOB-
JIFO€ BiZIMIHHOCTI B IpoLeaypax oOpoOKH CUTHAIB, iX e(eKTHBHOCTI Ta iHTeprperanii pe3ysb-
TaTiB, MOLIYKY 3aco0iB 1x mokparenns. Y mexax [THBII-migxoay He BH3HaYaeThes “KBaapaT
OTHHAIOYOi” SIK CyMa KBaJIpaTiB CHUTHaNY Ta iforo neperBopenHs ['iipbepra, OCKITbKHY 111 CyMa €
BHCOKOYAaCTOTHUM BHITaJJKOBHUM IIPOLIECOM, CEPEHE SIKOTO TOPIBHIOE IOBOEHIN Aucnepcii BXin-
HOTO CHTHAITY, a CIIEKTp ‘KBajpaTa OTHHAIOUOI € CHEeKTPOM JucHepcii 3 MOABIIHOIO aMILTiTy-
noto. ITokazaHo, o0 cHeKTpaibHi OL[IHKK, OTPUMAaHI METOJJOM KBaJ[paTa OTMHAI0YO] € 3MIII[CHU-
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MH i HecITyIHUMH. [IpoIeMOHCTPOBAHO MOXKIIMBICTS OTPHUMAHHS HE3MILIEHUX OLIIHOK METOZIO0M
ITHBIT nagith 3a BigHOmEHHs curaan/uryM, pisaoro 0,07.

KunrouoBi cioBa: nepioouuno necmayionapni 6unaokosi npoyecu, 8uUcOKO4ACMOMHI MOOYA-
Yii, ananimuyHull CUSHAT, K8AOPAM 02UHAIOYOT, excyec, 8iopayist.

Introduction. The techniques for analysis of vibration signagolv are based on
their model in the form of PNRP are known for yeldrs5]. Numerous results, which
have been obtained by processing real vibrationagsgconfirmed the effectiveness of
this model to describe exactly these featuresgfadithat are essential to diagnose the
mechanisms. The quantities, which describes thiegieal structure of the first and
second order moment functions for the PNRP model veell-applicable for fault
detection in mechanisms. The first attempts to ldgvihis approach were proposed in
the second half of the 1990s [6, 7]. The squareelepe technique was the main tool
for fault detection at that time [8—10] and islstiidely used today. The relation bet-
ween these approaches was discussed in brief Jn dbderlining their different me-
thodological bases, that is, the differences inrthecessing procedures, efficiency,
and the idea of interpretation of results, seaghior the means of improving their
quality, etc. We cannot define “squared envelope’'tree sum of squares of the raw
signal and its Hilbert transform, because this ssijust the high-frequency random
process, the mean function of which is equal taditgbled PNRP variance. In addition,
the “squared envelope” spectrum is the doubledcamas amplitude spectrum. The co-
variance function of the latter is equal to therfoumoment function of PNRP, which
in spectral form is used for selecting the so-célleformative frequency band”.

Vibration signal and its charac-

SRR teristics. Mentioned above techniques
LTRELLEL] ! were used to analyze the vibration signal
of a decanter Flottweg 24E bearing unit.
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-100 acquired and pre-processed using the
S = N o0 < »n O &y ®© .. .
S 3 3 3 S8 & <o < original data collection system. The
Time, s accelerometer was fixed at the bearing
Fig. 1. Segment of the vibration signal. unit casing. Cut-of frequency of an input

signal filter was set 5 kHz, the sampling
frequency wads = 10 kHz. Signal was
collected du ringl = 10 s. A segment of collected signal is showhig 1.
To study the general properties of the collectddation signal, the estimators of
its covariance function and the power spectral ithefisr stationary approximation of
PNRP were calculated:

R(jh ——Z[E (nh)- m][ ((n+i)h)- m], rﬁ:%Kg:E(nh), 1)
() zli K (nh)R(nh) cosconh. @

Here, h=T/K is the sampling intervalj is the integer numbeff is the signal du-
ration; K is the sample sizd, =u,,/h; u,, is the cut-off point of the correlogram and
k(nh) is the covariance window.

Graphs of the covariance function and spectral ieestimators are shown in
Fig. 2. The undamped tail in the covariance estm@ig. 2) induces the discrete com-
ponent of the spectral density estimator — weleditble peaks at certain frequencies
These peaks could also be a result of the narrow-Iséochastic modulation of the
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carrier harmonics. Such mixed spectrum makes ficdlf to interprete, evaluate and
gquantitative analyze the spectral estimation resbkcause it is necessary to separate
the continuous components from discrete and toopartheir individual analysis by
means of suitable techniques. This is an impod@gnostic issue, since the discrete
and continuous components may be caused by diffiereas of faults.
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Fig. 2. Estimators of the covariance functiahgnd the power spectral densiby (
for signal stationary approximation.

We use the following functional [12, 13] to estimaff the period of the PNRP mean
function, which describes the deterministic compisén vibration signal:

- 1 Ko
F1(6)=2K +ln=Z—:K ? (8,nh), @)
where
m(e, nh):i[rﬁf(e) coskz—ennh+r‘r§(6) sirk%nnh}, 4)
k=1

21
¢ (0 K cosk—nh
{m‘()} 3 6 (5)

IR

and 6 is the test period. The possible errors causedlibging effects can be avoided
by setting the sampling stdp in (4) and (5) to satisfy the following inequadii[12]

he— ' hs———
2L, +1 2L, +1

sink—nnh
0

here L, and L, are the numbers of the highest harmonics, usethéomean and the

covariance function estimations, respectively.
The maximum point of the functional (3) frequenagpdndence represents the

basic frequency f0=1/|3); within an accuracy of three decimal places. Wl f
fo =60.43 Hz for our collected signal.

PNRP and SES analysis of the decanter vibration sigl. Selection of the
appropriate central frequency and the bandwidtbrigial in the squared envelope
analysis method. Spectral kurtosis is one of thetrpowerful techniques for selection
of the proper frequency band [14]. It was calcwdaising the equation

(g

The statisticémz ( f) is the second-order empirical spectral momenneefias
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S (1)={ R0, 1)) .

where Ry, (kM , f) is the so-called short-time Fourier transform

k+Kyy = .
R (KM )= S & (nh) W (n—kn )2,
n=k

whereW (n) is the rectangular window of the lengy, and the sign((jj, marks the

time-averaged operator over index k. Here it isiaesl, that signal is locally stationary
and the signal correlation length is shorter tHa window length [11]. It is recom-
mended in the literature to choose a window lersmtimewhat shorter than the signal
pulse width.

The local stationarity of the vibration signal cdimh is satisfied if the signal
correlation length is much shorter than the notiestarity period. This condition is
rarely fulfilled for real vibration signals, butahspectral kurtosis is still successfully
used in practice. In our case, the vibration sigiso is not locally stationary, since the
non-stationarity period is much shorter than theeatation length of the signal.

Since the largest part of power of the signals tetetic part is within the
frequency range [0, 2.8 kHz] (see Fig. 2), we daledl the kurtosis for the frequencies
which belong to this band. The window lengths wetesen as O3 0.4° and 0.®.

The largest values of the kurtosis are reachedigr=0.3P in the interval [0.2 kHz,

2.8 kHz] (Fig. 3).

To calculate the squared envelope spectrum, @desmmended to choose the fre-
quency band around the central frequency with badttivequal 3 to 4 times of the ba-
sic frequency value [8, 15, 16]. We calculatedgfeared envelope spectrum selecting
the band [1.3 kHz, 1.6 kHz], which contains 5 higdguency components of the signal.

Kurtosis

S = NN W Bk W
~

Frequency, Hz
Fig. 3. Spectral kurtosis of the vibration sigraak: Ky, = 0.3; b — Ky, = 0.4° andc — Ky = 0.€P.

The squared envelope spectrum is found using tekerete Fourier transform
(DFT) of the squared modulus of the analytic sighd]:

seqk)= DF1{|z(n)|2]: DFY &2 (nh)+n?(nh)} .

The discrete Fourier transform for squared enveltpfel9]
) —ik%ﬂn

DFT{|Z(n)|2}::Z:_::|Z(n)| e

is calculated using discrete-time Fourier transffit6) 20]
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lf(f):th_l|z (nh)|2 g i2mnh (6)
n=0

F (kaf)
-
Taking into accountEn?(nh)=E&2(nh), the mathematical expectation of (6)
will be

. 1
setting f =kAf , Af h and DFT{|Z(n)|} =

EF (f)=2h" b (nh, )2 @)
n=0

Substituting into (7) the dependence for the vasal (nh,0)in the form of a
Fourier series, we get

2L . i _
A _ ) im(rfo—f)(K-1)h SlnT[( 2f, f)Kh
EF(f) 2hr§2LBr (O)e Sn(ifo=)h (8)

The values in (8) at point$ =rf, are equal to:
EF (rf)=218{%) (0),

where T=Kh is the signal duration time. So, the vaIuEEA(rfo);tZBgE)(O) are

different, depending on time.
The variance for (8) for Gaussian PNRP is equal to:

K -1 bg(nh,0)+ . K-1K-r— béz(nh,0)+
[+b§<(nh,0)} 22, Z‘Lb‘zzq(nh,rh)

As it follows from (9),Varé( f) -~ o as K - o, So, such estimator is inconsis-

tent and establishing properties of the estimatd6) leads to significant errors in cal-
culating the spectrum of the variance for the aiagignal using DFT.
Such inferences are confirmed by the processingltsedn Fig. 4 the graphs of

the frequency dependence of the va‘lﬁeﬁ f )‘ for the different realization lengths are

VarF ( f)=4h? } cos 2irh |. 9)

n=0 r=1 n=0

presented. Here the values‘éf( f )‘ were calculated with steppf =0.1 Hz. Table 1

gives the maximum values b? ( f )‘ . As we can see, the maximum values are changing

approximately in proportion to the realization lémgand the power of the fluctuations
increases as the realization length grows. Itdarcihat in this case the maximum values
cannot be considered as the estimators for theitaues of the squared envelope har-
monics, while the points of the maximum values @ose to the values of the basic
frequency and its multiples.

Now introduce the transforms

{(;a(f)}_i i [Ez(nh)Jrnz(nh)HcosZ'lfnh}’ (10)

Si(f) 2K +1,"k sin 2rfnh

which referred to as the component [21] or cychig][statistics. SES is presented also
in a similar form in [23, 24]. Based on the resuolt$25, 26], we can deduce that
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lim Cy(f)=

{ch (0), f =kfo,
T 5o

0, otherwise

_ 2S.(0), f =kfq,
lim f)=
quosa( ) {0, otherwise
and
TIim VarC,(f)=0, TIim VarS,(f)=0,
if the covariance components vanish asulamcreases:
limB, (u)=0, Or=0,2L.
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Fig. 4. Amplitude spectra of the analytic signaldulus:
a—K=310% b-K = 610% c—K = 1210% d — K = 2410°.

Table 1. Maximum values of Fourier transform (6) malulus and their points

Sample size, Maximum pointsfia, Hz
K 0 60.42 120.84 181.26 241.68
3010 31.238 23.559 16.823 10.388 4.073
6 (10° 52.306 37.880 27.121 16.911 6.711
12m0° 97.696 67.220 47.960 30.871 11.052
24110° 197.940 135.686 98.904 62.848 22.093

This means that the points of the extremums ofssia{6) can be considered as
the estimators for carrier harmonics frequencies, #ne extremum values — as the
estimators of Fourier coefficients for analytic g variance. The quantities

o P S V-
Va(kfo):[[ca(kro)} +[Sa(kf0)J } can be considered as the estimators of harmo-

nic amplitudes. It has been shown in [25, 26] thatvariances of the frequency esti-
mators have convergence orde(T '3), and the variance of the Fourier coefficient
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estimators have convergence orc(é(l'_l). Taking this into account, we chose the

estimation of the basic frequendy as the first issue in the time series processing.

To detect the hidden periodicities of the secondegrwe use the variance
functional [12, 13]

F,(0,8)=—"— 2K Z RZ (nh,08). (11)

As the next step, we calculated the variance Fouagefficients using statistics
(11) for 6= fo_l. The statistics obtained in this way, in contrtas{10), are selective

only relative to harmonics with frequencikﬁ) and their selectivities increase as the
realization length grows.

1/2
The maximum values dﬁa(f):[[éa(f)}ﬂ[éa(f)]z} , which were calcu-

lated using cyclic statistics (10), are given irblEa2. For largeK these values differ
insignificantly from the values of the estimatoos the variance Fourier coefficients.

Table 2. Maximum values of cyclic estimator\?a( f) for analytic signal modulus

Sample size, Maximum pointsfia, Hz
K 0 60.42 120.84 181.26 241.68
3010 104.163 157.114 112.188 69.278 27.158
6 10 87.190 126.286 90.418 56.378 22.372
120 81.420 112.042 79.940 51.456 18.420
24110° 82.478 113.076 82.424 52.406 18.412

Unreasonable narrowing of the signal frequency bahidh is performed for cal-
culating the squared envelope spectrum is one efntlain disadvantages of this
technique. It reduces the number of spectrum haice@nd thus, the estimated values
of their amplitudes. As we can see, the filtergghal bandwidth must be three to four
times as large as the traditionally chosen bandhwitihe wider frequency band makes
it possible to involve a larger number of harmornitshe least square (LS) functional
for discovering the hidden periodicities of the@®at order, and to improve its sensiti-
vity. Note that we deal with a similar case analgzvibrations which were selected
from a wind turbine gearbox [13]. On the graph lué frequency dependence of the

mono-component functionaiz(f)-%l Z Eo(n)c0521fnh we can observe only

chaotic oscillations (Fig.&, while the graph of the functional (11) fap =10 contains
a clear peak (Fig.l§ at the pointf0 =24.2 Hz that proves a defect initiation. The va-
lue of functional (11) at this point i, ( fy) =338010° (m/s)*.
The time-averaged power of vibrationEg(0) = 223010 (m/<)? . If we define
Falfo)
50

signal-to-noise ratio (SNR) a&SNR =—* we obtain for our cas€NR = 0.07. So,

we can confirm that use of the LS functional (1daldes the fault detection for small
enough SNR. This stage of the fault growth we aarsidler as initial.
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CONCLUSION

It has been shown that the square of the anaigiimbmodulus is not a “squared
envelope” in the accepted sense, but is a randoneps, the mathematical expectation
of which is equal to twice the variance of the ignal. Hence, the Hilbert transform
cannot be used as a demodulating procedure ircéisis, and the “squared envelope”
can only be analyzed as a realization of a randaoess using PNRP techniques. The
“squared envelope” spectrum used in the literairaturally the amplitude spectrum
of the time changes in the power for the stochasit of the vibration. The issue of
filtering of the raw signal for selection of thefanmative frequency band must also be
re-formulated. It is necessary to consider it imnie of the filtering of a PNRP, which
has some special features which must be takercorisideration for a more effective
choice of bandwidth for the analysis.
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