Home

³äá³ð ³ îáðîáêà ³íôîðìàö³¿, ¹ 32(108), 2010


ÀÍÎÒÀÖ²¯

ÏÎËß ÒÀ ÑÈÃÍÀËÈ Ó ÍÅÎÄÍÎвÄÍÈÕ ÑÅÐÅÄÎÂÈÙÀÕ
ÓÄÊ 537.874
ß. Ï. Êóëèíè÷, Ä. Á. Êóðèëÿê, Î. Ñ. Êîâàëü
ÐÎÇѲßÍÍß ÅËÅÊÒÐÎÌÀÃͲÒÍÎÃÎ ÏÎËß ÌÀËÎÞ ÊÐÓÃÎÂÎÞ ÒвÙÈÍÎÞ Â ÅËÅÊÒÐÎÏÐβÄÍÎÌÓ Ï²ÂÏÐÎÑÒÎв
The technique of analytical determination of the electromagnetic field, scattered by the small crack in the semi-unbounded body is developed. The scattered field components are determined as the field components of the equivalent electric dipole.
Key words: electric dipole, small parameter method, scattering, electromagnetic field, crack.

Âèêëàäåíî ìåòîäèêó àíàë³òè÷íîãî âèçíà÷åííÿ åëåêòðîìàãí³òíîãî ïîëÿ, ðîçñ³ÿíîãî ìàëîþ òð³ùèíîþ ó íàï³âáåçìåæíîìó ò³ë³. Âåêòîðè ðîçñ³ÿíîãî ïîëÿ âèçíà÷àþòüñÿ ÿê âåêòîðè ïîëÿ äåÿêîãî åêâ³âàëåíòíîãî åëåêòðè÷íîãî äèïîëÿ.
Êëþ÷îâ³ ñëîâà: åëåêòðè÷íèé äèïîëü, ìåòîä ìàëîãî ïàðàìåòðà, ðîçñ³ÿííÿ, åëåêòðîìàãí³òíå ïîëå, òð³ùèíà.

ÓÄÊ 517.956
Ì. ². Àíäð³é÷óê
ÌÎÄÅËÞÂÀÍÍß ÑÅÐÅÄÎÂÈÙ ²Ç ÇÀÄÀÍÈÌ ÊÎÅÔ²Ö²ªÍÒÎÌ ÇÀËÎÌËÅÍÍß
A combination of asymptotic approach and computational modeling is used for solution of problem to create the media with the prescribed electrodynamic characteristic, in particular, a refraction coefficient. The initial diffraction problem is considered under the assumptions ka<< 1, d >> a, where a is the size of the particle and d is the distance between the neighboring particles. Impedance boundary conditions are assumed on the boundaries of small particles. The results of numerical simulation show good agreement with the theory. They open a way to numerical implementation of the method for creating media with a desired refraction coefficient.
Key words: scattering by small bodies, asymptotic approach, refraction coefficient, numerical modeling.

Ïîºäíàííÿ àñèìïòîòè÷íîãî ï³äõîäó ³ ÷èñëîâîãî ìîäåëþâàííÿ âèêîðèñòàíî äëÿ ðîçâ'ÿçêó çàäà÷³ ïðî ñòâîðåííÿ ñåðåäîâèùà ³ç çàäàíèìè åëåêòðîäèíàì³÷íèìè õàðàêòåðèñòèêàìè, çîêðåìà êîåô³ö³ºíòîì çàëîìëåííÿ. Ñòàðòîâó äèôðàêö³éíó çàäà÷ó ðîçâ'ÿçàíîçà ïðèïóùåííÿì êà << 1, d>> à, äå à - ðîçì³ð îêðåìîãî âêëþ÷åííÿ, a d- â³äñòàíü ì³æ íèìè. Íà ïîâåðõí³ ìàëèõ âêëþ÷åíü çàäàíî ãðàíè÷í³ óìîâè ³ìïåäàíñíîãî òèïó. Ðåçóëüòàòè ÷èñëîâîãî ìîäåëþâàííÿ çá³ãàþòüñÿ ç òåîðåòè÷íèìè ïîëîæåííÿìè, ùî â³äêðèâຠìîæëèâ³ñòü ÷èñëîâî¿ ðåàë³çàö³¿ ìåòîäó ñòâîðåííÿ ñåðåäîâèù ³ç çàäàíèì êîåô³ö³ºíòîì çàëîìëåííÿ.
Êëþ÷îâ³ ñëîâà: ðîçñ³ÿííÿ íà ìàëèõ âêëþ÷åííÿõ, àñèìïòîòè÷íèé ï³äõ³ä, êîåô³ö³ºíò çàëîìëåííÿ, ÷èñëîâå ìîäåëþâàííÿ.

ÌÀÒÅÌÀÒÈ×Ͳ ÌÎÄÅ˲ ÑÈÃÍÀ˲ ÒÀ ÑÈÑÒÅÌ
ÓÄÊ 621.391:519.22
². Ì. ßâîðñüêèé, P. M. Þçåôîâè÷, ². Á. Êðàâåöü
ÂÈIJËÅÍÍß ÄÅÒÅÐ̲ÍÎÂÀÍί ÑÊËÀÄÎÂί ÏÅвÎÄÈ×ÍÎ ÍÅÑÒÀÖ²ÎÍÀÐÍÈÕ ÂÈÏÀÄÊÎÂÈÕ ÏÐÎÖÅѲ ÌÅÒÎÄÎÌ ÍÀÉÌÅÍØÈÕ ÊÂÀÄÐÀÒ²Â
The investigation results of mean least square estimate for periodically nonstationary processes -mathematical model of stochastic oscillations - are considered. The formulas for estimate statistical characteristics are analyzed. The examples of typical processes analysis are shown.
Key words: periodically correlated random processes (PCRP), mean, correlation function, least squares estimate, bias, variance.

Ðîçãëÿíóòî ðåçóëüòàòè äîñë³äæåíü îö³íêè íàéìåíøèõ êâàäðàò³â ìàòåìàòè÷íîãî ñïîä³âàííÿ ïåð³îäè÷íî íåñòàö³îíàðíèõ âèïàäêîâèõ ïðîöåñ³â - ìàòåìàòè÷íî¿ ìîäåë³ ñòîõàñòè÷íèõ êîëèâàíü. Ïðîâåäåíî àíàë³ç ôîðìóë, ùî âèçíà÷àþòü ñòàòèñòè÷í³ õàðàêòåðèñòèêè îö³íêè. Íàâåäåíî ïðèêëàäè àíàë³çó òèïîâèõ ïðîöåñ³â.
Êëþ÷îâ³ ñëîâà: ïåð³îäè÷íî òðåëüîâàíî âèïàäêîâ³ ïðîöåñè (ÏÊÂÏ), ìàòåìàòè÷íå ñïîä³âàííÿ, êîðåëÿö³éíà ôóíêö³ÿ, îö³íêè íàéìåíøèõ êâàäðàò³â, çì³ùåííÿ, äèñïåðñ³ÿ.

ÓÄÊ 621.319:519.22
². É. Ìàöüêî, ². Á. Êðàâåöü, ². Ì. ßâîðñüêèé
ÑÏÅÊÒÐÀËÜͲ ÂËÀÑÒÈÂÎÑÒ² ²ÁÐÀÖ²ÉÍÎÃÎ ÑÈÃÍÀËÓ ÄÅÒÀ˲ Ç ÒвÙÈÍÎÞ
Changes of the spectral characteristics of vibration signals from thin cracked blade with crack grows is analyzed in this article. The formulae for cross spectral densities estimates of signal's stationary components are derived.
Key words: vibration signal, spectral density, periodically correlated random process.

Ïðîàíàë³çîâàíî çì³íó ñïåêòðàëüíèõ õàðàêòåðèñòèê â³áðàö³éíèõ ñèãíàë³â â³ä òîíêî¿ ïëàñòèíè ç òð³ùèíîþ ó ïðîöåñ³ ðîçâèòêó òð³ùèíè. Âèâåäåíî ôîðìóëè äëÿ îö³íþâàííÿ âçàºìíèõ ñïåêòðàëüíèõ ãóñòèí ñòàö³îíàðíèõ êîìïîíåíò â³áðàö³éíîãî ñèãíàëó.
Êëþ÷îâ³ ñëîâà: â³áðàö³éíèé ñèãíàë, ñïåêòðàëüíà ãóñòèíà, ïåð³îäè÷íî êîðåëüîâàíèé âèïàäêîâèé ïðîöåñ.

ÓÄÊ 535.361: 620.186
². Á. ²âàñ³â
²ÄÒÂÎÐÅÍÍß ÏÐÎÑÒÎÐÎÂί ÌÅÇÎÑÒÐÓÊÒÓÐÈ ÏÎ˲ÄÈÑÏÅÐÑÍÈÕ ÏÎÐÎØÊÎÂÈÕ ÌÀÒÅвÀ˲ ÇÀ ÑÈÃÍÀËÎÌ ÑÅÍÑÎÐÀ ÄÈÔÓÇÍÎÃΠ²ÄÁÈÂÀÍÍß Ñ²ÒËÀ
The conditions of realisation of non-destructive express-analysis of polydisperse powder material's spatial mesostructure are considered. And the algorithms of reconstruction of mesostructure from diffuse reflected light characteristics are analysed. It is proposed to construct the algorithm on the base of the reverse Monte Carlo method with the direct Monte Carlo simulation of light propagation in medium represented with discrete-particulate model.
Key words: polydisperse powder materials, spatial mesostructure, non-destructive analysis, diffuse light reflection, algorithms of reconstruction.

Íà îñíîâ³ ðîçãëÿäó óìîâ çä³éñíåííÿ íåðóéí³âíîãî åêñïðåñ-êîíòðîëþ ïðîñòîðîâî¿ ìåçîñòðóêòóðè ïîë³äèñïåðñíèõ ïîðîøêîâèõ ìàòåð³àë³â ïðîàíàë³çîâàíî àëãîðèòìè â³äòâîðåííÿ ìåçîñòðóêòóðè çà õàðàêòåðèñòèêàìè äèôóçíîãî â³äáèâàííÿ ñâ³òëà. Çàïðîïîíîâàíî áóäóâàòè àëãîðèòì íà îñíîâ³ çâîðîòíîãî ìåòîäó Ìîíòå-Êàðëî ç ïðÿìîþ Ìîíòå-Êàðëî ñèìóëÿö³ºþ ïîøèðåííÿ ñâ³òëà ó ñåðåäîâèù³, ïðåäñòàâëåíîìó äèñêðåòíî-÷àñòèíêîâîþ ìîäåëëþ.
Êëþ÷îâ³ ñëîâà: ïîë³äèñïåðñí³ ïîðîøêîâ³ ìàòåð³àëè, ïðîñòîðîâà ìåçîñòðóêòóðà, íåðóéí³âíèé êîíòðîëü, äèôóçíå â³äáèâàííÿ ñâ³òëà, àëãîðèòìè â³äòâîðåííÿ.

ÓÄÊ 517.5(075.8)
Ñ. Â. Çàáîëîòí³é
ÐÎÇÊËÀÄ ÂÈÏÀÄÊÎÂÈÕ ÂÅËÈ×ÈÍ Ó ÒÐÈÃÎÍÎÌÅÒÐÈ×Ͳ ÑÒÎÕÀÑÒÈ×Ͳ ÐßÄÈ
The possibility of decomposition of random variables in trigonometrically stochastic series is considered in this work. The coefficients of decomposition are deducted from condition of minimization of main square error of decomposition. The results of simulation of this decomposition are resulted.
Key words: generating random values, stochastic polynomial, characteristic function, minimum square error of decomposition.

Ðîçãëÿíóòî ìîæëèâ³ñòü ðîçêëàäó âèïàäêîâèõ âåëè÷èí ó òðèãîíîìåòðè÷í³ ñòîõàñòè÷í³ ðÿäè. Êîåô³ö³ºíòè ðîçêëàäó çíàõîäÿòü ç óìîâè ì³í³ì³çàö³¿ ñåðåäíüîêâàäðàòè÷íî¿ ïîõèáêè ðîçêëàäó. Íàâåäåíî ðåçóëüòàòè ³ì³òàö³éíîãî ìîäåëþâàííÿ öüîãî ðîçêëàäó.
Êëþ÷îâ³ ñëîâà: ïîð³äíà âèïàäêîâà âåëè÷èíà, ñòîõàñòè÷íèé ïîë³íîì, õàðàêòåðèñòè÷íà ôóíêö³ÿ, ñåðåäíüîêâàäðàòè÷íà ïîõèáêà ðîçêëàäó.

ÓÄÊ 517.958:519.6
². ². Äèÿê, Ì. Â. Çàÿöü, ². Ã. Ìàêàð
×ÈÑÅËÜÍÀ ÐÅÀ˲ÇÀÖ²ß ÎÄÍÎвÂÍÅÂÎÃÎ ÌÑÅÐÇ (FETI) ÌÅÒÎÄÓ ÄËß ÏËÎÑÊί ÇÀÄÀײ ÒÅÎв¯ ÏÐÓÆÍÎÑÒ²
Finite Element Method is most widely used to solve boundary value problems. However in the case of domains with complicated geometry, inhomogeneous and large-scale problems some special approaches are needed. The domain decomposition approach for parallel finite element solution of the problem of the theory of elasticity is presented in this study. The computational results of the investigation of numerical efficiency of the developed algorithm are given.
Key words: finite element method tearing and interconnecting (FETI), pseudo-inverse matrix, 2-D theory of elasticity problem, numerical experiments.

Îäíèì ç íàéïîøèðåí³øèõ ìåòîä³â ðîçâ'ÿçàííÿ åë³ïòè÷íèõ çàäà÷ º ìåòîä ñê³í÷åííèõ åëåìåíò³â, îäíàê ó âèïàäêó ñêëàäíî¿ ãåîìåò𳿠îá'ºêòà, ð³çíèõ íåîäíîð³äíîñòåé ÷è ïðè âåëèê³é ê³ëüêîñò³ âóçë³â òð³àíãóëÿö³¿ éîãî ïðÿìå çàñòîñóâàííÿ ìîæå áóòè ïðîáëåìàòè÷íèì.  ö³é ðîáîò³ çàïðîïîíîâàíî âàð³àíò ìåòîäó äåêîìïîçèö³¿ îáëàñò³ äëÿ ïàðàëåëüíîãî ðîçâ'ÿçàííÿ çàäà÷³ òåî𳿠ïðóæíîñò³ ìåòîäîì ñê³í÷åííèõ åëåìåíò³â, â³äîìèé ÿê ìåòîä ñê³í÷åííèõ åëåìåíò³â ðîçðèâ³â ³ ç'ºäíàíü (ÌÑÅÐÇ). Íàâåäåíî ðåçóëüòàòè äîñë³äæåííÿ ÷èñåëüíî¿ åôåêòèâíîñò³ ðîçðîáëåíîãî àëãîðèòìó ó âèïàäêó ïëîñêî¿ çàäà÷³ òåî𳿠ïðóæíîñò³.
Êëþ÷îâ³ ñëîâà: ìåòîä ñê³í÷åííèõ åëåìåíò³â ðîçðèâ³â ³ ç'ºäíàíü (ÌÑÅÐÇ), ïñåâäîîáåðíåíà ìàòðèöÿ, ïëîñêà çàäà÷à òåî𳿠ïðóæíîñò³, ÷èñåëüí³ åêñïåðèìåíòè.

UDC 621.3:004.94
P. Struzewski
NUMERICAL ESTIMATION OF ALUMINIUM SHEETS HEATING CAUSED BY ENERGY OF LIGHTNING STROKES
The article deals with the description of usage of developed numerical model for metal sheets temperature fields estimation for determination of aluminium plates temperature increase lability after direct lightning hits. The author proved that in the case of logarithmic coordinates application, there is an approximation possibility of every of graphical interpretations of relationships between the maximum temperature increase of aluminum sheet point opposite to the site struck by lightning and the time of main discharge, by two rectilinear sections.
Key words: lightning strike, aluminium sheet temperature, method of reflections.

Ñòàòòÿ ïðèñâÿ÷åíà îïèñó çàñòîñóâàííÿ ðîçðîáëåíî¿ àâòîðîì ÷èñåëüíî¿ ìîäåë³ îö³íêè òåìïåðàòóðíèõ ïîë³â àëþì³í³ºâèõ ëèñò³â äëÿ âèçíà÷åííÿ çì³íè ï³äâèùåíü òåìïåðàòóðè ëèñò³â ï³ñëÿ áåçïîñåðåäí³õ óäàð³â áëèñêàâêè. Àâòîð äîâ³â, ùî ó âèïàäêó âèêîðèñòàííÿ ëîãàðèôì³÷íèõ êîîðäèíàò ³ñíóº ìîæëèâ³ñòü àïðîêñèìàö³¿ êîæíî¿ ç ãðàô³÷íèõ ³íòåðïðåòàö³é çàëåæíîñòåé ì³æ ìàêñèìóìîì ï³äâèùåííÿ òåìïåðàòóðè â ïóíêò³ ïðîòèëåæíîìó ì³ñöþ óäàðó áëèñêàâêè ³ ÷àñîì ãîëîâíîãî ðîçðÿäó äâîìà ïðÿìîë³í³éíèìè â³äð³çêàìè.
Êëþ÷îâ³ ñëîâà: áëèñêàâêà, òåìïåðàòóðà àëþì³í³ºâèõ ëèñò³â, ìåòîä â³äîáðàæåíü.

ÎÁÐÎÁÊÀ ÂÈ̲ÐÞÂÀËÜÍί ²ÍÔÎÐÌÀÖ²¯
ÓÄÊ 550.388.2
Ñ. Î. Ñîðîêà, Â. Ï. Ìåçåíöåâ, Ë. Ì. Êàðàòàºâà
ÇÂ'ßÇÎÊ ÑÅÉÑ̲×Íί ÀÊÒÈÂÍÎÑÒ² Ç ÀÒÌÎÑÔÅÐÍÈÌ ²ÍÔÐÀÇÂÓÊÎÌ
The connection the infrasonic fluctuations in an atmosphere with seismic activity in some region for period 1997-2000 are considered in the work. The model of stationary random process is used for the analysis. The coordination spectral of the characteristics infrasound and seismic activity are shown for the given period of time. The analysis of researches shows change of a spectrum infrasound before earthquake.
Key words: atmospheric infrasound, seismic activity, acoustic channel of lithosphere-ionosphere connection, spectral density of infrasound envelope.

Ðîçãëÿíóòî âçàºìîçâ'ÿçîê ³íôðàçâóêîâèõ êîëèâàíü â àòìîñôåð³ ³ç ñåéñì³÷íîþ àêòèâí³ñòþ â çàäàíîìó ðåã³îí³ çà 1997-2000 ðîêè. Äëÿ àíàë³çó âèêîðèñòàíî ìîäåëü ñòàö³îíàðíîãî âèïàäêîâîãî ïðîöåñó. Ïðîñòåæåíî óçãîäæåí³ñòü ñïåêòðàëüíèõ õàðàêòåðèñòèê ³íôðàçâóêó ³ ñåéñì³÷íî¿ àêòèâíîñò³ çà öåé ïåð³îä ÷àñó. Àíàë³ç ïðîâåäåíèõ äîñë³äæåíü çàñâ³ä÷óº çì³íó ñïåêòðà ³íôðàçâóêó çà ê³ëüêà äí³â äî çåìëåòðóñó.
Êëþ÷îâ³ ñëîâà: àòìîñôåðíèé ³íôðàçâóê, ñåéñì³÷íà àêòèâí³ñòü, àêóñòè÷íèé êàíàë ë³òîñôåðíî-³îíîñôåðíèõ çâ 'ÿçê³â, ñïåêòðàëüíà ãóñòèíà îãèíàþ÷î¿ ³íôðàçâóêó.

ÓÄÊ 519.718.2
C. Â. Ùåðáîâñüêèõ, Î. Þ. Ëîçèíñüêèé, Ò. Ì. Ñàõàð÷óê
ÐÎÇÐÀÕÓÍÎÊ ²ÍÒÅÍÑÈÂÍÎÑÒ² ÏÎÒÎÊÓ Â²ÄÌΠÄÓÁËÜÎÂÀÍί ÑÈÑÒÅÌÈ Ç ÍÀÂÀÍÒÀÆÓÂÀËÜÍÈÌ ÐÅÇÅÐÂÓÂÀÍÍßÌ
The paper is devoted to problem of failure intensity calculation for doubled repairable system with loaded redundancy. Failure intensity determination is suggested by using special method for extended Markov reliability model. The correctness for such approach is verified by Monte-Carlo method.
Key words: reliability, Markov analysis, rate occurrence of failures (ROCOF).

Ðîçãëÿíóòî ïðîáëåìó ðîçðàõóíêó ³íòåíñèâíîñò³ ïîòîêó â³äìîâ äëÿ äóáëüîâàíî¿ â³äíîâëþâàíî¿ ñèñòåìè ç íàâàíòàæóâàëüíèì ðåçåðâóâàííÿì. Âèçíà÷àòè ³íòåíñèâí³ñòü ïîòîêó â³äìîâ çàïðîïîíîâàíî øëÿõîì çàñòîñóâàííÿ ñïåö³àëüíîãî ìåòîäó ùîäî ðîçøèðåíî¿ ìàðêîâñüêî¿ ìîäåë³ íàä³éíîñò³. Êîðåêòí³ñòü òàêîãî ï³äõîäó ïåðåâ³ðåíî ìåòîäîì Ìîíòå-Êàðëî.
Êëþ÷îâ³ ñëîâà: íàä³éí³ñòü, ìàðêîâñüêèé àíàë³ç, ³íòåíñèâí³ñòü ïîòîêó â³äìîâ.

ÓÄÊ 520.272.5
Â. Â. Êîøîâèé, À. Á. Ëîçèíñüêèé, Î. Ë. ²âàíòèøèí, Á. Ñ. Õàð÷åíêî, Ð. À. Ëîçèíñüêèé
ÂÈÊÎÐÈÑÒÀÍÍß ÖÈÔÐÎÂÎÃÎ ÐÀIJÎÌÅÒÐÀ ÍÀ ÁÀDz ÄÅÊÀÌÅÒÐÎÂÎÃÎ ÐÀIJÎÒÅËÅÑÊÎÏÀ ÓÐÀÍ-3 ÄËß ÑÏÎÑÒÅÐÅÆÅÍÍß ÑÎÍÖß
The results of observations of the solar eclipse on 1, August 2008 using digital radiometer on basis the decameter radio telescope URAN-3 are presented. The observations were performed using a technique of scanning the passing source by a fixed beam pattern of antenna. In culmination for the coordinates of the radio telescope URAN-3 obscuration of the Sun at optical wavelengths was 11,5%. Relations of integral flux of the Sun masked by the Moon to not masked has been obtained.
Key words: digital radiometer, solar corona, radio observations.

Íàâåäåíî ðåçóëüòàòè ñïîñòåðåæåíü ñîíÿ÷íîãî çàòåìíåííÿ 1 ñåðïíÿ 2008 ð ç âèêîðèñòàííÿì öèôðîâîãî ðàä³îìåòðà íà áàç³ äåêàìåòðîâîãî ðàä³îòåëåñêîïà ÓÐÀÍ-3. Ñïîñòåðåæåííÿ ïðîâîäèëè ìåòîäîì ïðîõîäæåííÿ äæåðåëà ÷åðåç íåðóõîìó ä³àãðàìó ñïðÿìîâàíîñò³ àíòåíè.  ìîìåíò êóëüì³íàö³¿ äëÿ êîîðäèíàò ðàä³îòåëåñêîïà ÓÐÀÍ-3 âåëè÷èíà çàòåìíåííÿ âèäèìîãî äèñêà Ñîíöÿ ñòàíîâèëà 11,5%. Çà ðåçóëüòàòàìè åêñïåðèìåíòàëüíîãî äîñë³äæåííÿ îòðèìàíî îö³íêè â³äíîøåííÿ ãóñòèíè ïîòîê³â Ñîíöÿ, çàìàñêîâàíîãî ̳ñÿöåì, äî íåçàìàñêîâàíîãî.
Êëþ÷îâ³ ñëîâà: öèôðîâèé ðàä³îìåòð, ñîíÿ÷íà êîðîíà, ðàä³îñïîñòåðåæåííÿ.

ÎÁÐÎÁÊÀ ÇÎÁÐÀÆÅÍÜ ÒÀ ÐÎÇϲÇÍÀÂÀÍÍß ÎÁÐÀDzÂ
ÓÄÊ 004.93+519.2
Á. Î. Êàïóñò³é, Î. Â. Íàäîáêî, Â. Ì. Ðåï³ê
ÐÎÇϲÇÍÀÂÀÍÍß ÇÎÁÐÀÆÅÍÜ ÇÀ ÄÎÏÎÌÎÃÎÞ ÖÈÔÐÎÂÈÕ Ô²ËÜÒÐ²Â Ç ÌÎÄÈÔ²ÊÎÂÀÍÈÌÈ ²ÌÏÓËÜÑÍÈÌÈ ÕÀÐÀÊÒÅÐÈÑÒÈÊÀÌÈ
General conception of recognition of images with noises using nonrecursive digital filters is formed. The scheme of algorithm of correlated image recognition is proposed. The influence of recognition system parameters on the authentication of true identification of image with etalon is investigated.
Key words: pattern recognitions, not recursive digital filters, Cappellini window.

Ñôîðìóëüîâàíî çàãàëüíó êîíöåïö³þ ùîäî ðîçï³çíàâàííÿ çàøóìëåíèõ çîáðàæåíü çà äîïîìîãîþ íåðåêóðñèâíèõ öèôðîâèõ ô³ëüòð³â. Çàïðîïîíîâàíî áëîê-ñõåìó àëãîðèòìó êîðåëÿö³éíîãî ðîçï³çíàâàííÿ çîáðàæåíü. Äîñë³äæåíî âïëèâ ïàðàìåòð³â ñèñòåìè ðîçï³çíàâàííÿ íà äîñòîâ³ðí³ñòü ïðàâèëüíî¿ ³äåíòèô³êàö³¿ çîáðàæåííÿ ç åòàëîíîì.
Êëþ÷îâ³ ñëîâà: ðîçï³çíàâàííÿ îáðàç³â, íåðåêóðñèâí³ öèôðîâ³ ô³ëüòðè, â³êíî Êàïïåë³í³.

ÓÄÊ 004.9344
P. À. Ìåëüíèê, Þ. ². Êàëè÷àê
ÏÎØÓÊ ÎÁÐÀDz ÇÀ ÑÈËÓÅÒÀÌÈ ßÑÊÐÀÂÎÑÒ² ÇÎÁÐÀÆÅÍÜ
An approach to find different types of a pattern brightness silhouettes which then are being replaced by polynomial coefficients of approximation functions is considered. Coefficients and silhouette diagrams of visual patterns were tested as image features for searching them in the databases.
Key words: visual pattern, brightness, silhouette, search.

Äëÿ çìåíøåííÿ ÷àñîâèõ çàòðàò ïîøóêó çîáðàæåíü ó áàçàõ äàíèõ âåëèêèõ ðîçì³ð³â çàïðîïîíîâàíî ï³äõ³ä, ùî áàçóºòüñÿ íà âèçíà÷åíí³ ñèëóåò³â ÿñêðàâîñò³ çîáðàæåíü ð³çíèõ òèï³â: ôðîíòàëüíîãî òà á³÷íîãî äëÿ äâîõ âèä³â ÿñêðàâîñò³. Ïîäàëüøå ïðèñêîðåííÿ ïîøóêó â³äáóâàºòüñÿ âíàñë³äîê çàì³íè êðèâèõ ñèëóåò³â ïîë³íîì³àëüíèìè ôóíêö³ÿìè ÷åáèøîâñüêîãî òèïó. ßê ïðèêëàäè ïðàêòè÷íèõ äàíèõ âèêîðèñòàí³ çîáðàæåííÿ ³ç â³äîìèõ áàç îáðàç³â.
Êëþ÷îâ³ ñëîâà: îáðàç, ÿñêðàâ³ñòü, ñèëóåò, ïîøóê.

ÓÄÊ 681.786: 535.41
Î. Ï. Ìàêñèìåíêî, Ñ. À. Íå÷èïîðóê, Á. Ä. ²ëü÷èøèí
ÄÎÑ˲ÄÆÅÍÍß ÂÏËÈÂÓ ËÎÊÀËÜÍÈÕ ÄÅÔÎÐÌÀÖ²É ÏÎÂÅÐÕͲ ÍÀ ÀÌÏ˲ÒÓÄÓ ÊÎÐÅËßÖ²ÉÍÎÃÎ ÑÈÃÍÀËÓ Ó ÏÐÎÖÅѲ ÎÁÐÎÁÊÈ ÇÎÁÐÀÆÅÍÜ

The model of a correlation signal for non-coherent speckles is offered and quantitative ratio between value of deformations and amplitude of cross-correlation peak with taking into account the dimension of non-coherent speckles and their quantities in an image fragment are established.
Keywords: non-coherent speckles, deformation, image fragment, cross-correlation.

Çàïðîïîíîâàíî ìîäåëü êîðåëÿö³éíîãî ñèãíàëó äëÿ íåêîãåðåíòíèõ ñïåêë³â, âèçíà÷åíî ê³ëüê³ñí³ ñï³ââ³äíîøåííÿ ì³æ âåëè÷èíîþ äåôîðìàö³é òà àìïë³òóäîþ ï³êà êðîñ-êîðåëÿö³¿ ç óðàõóâàííÿì ðîçì³ð³â íåêîãåðåíòíèõ ñïåêë³â òà ¿õ ê³ëüêîñò³ ó ôðàãìåíò³ çîáðàæåííÿ.
Êëþ÷îâ³ ñëîâà: íåêîãåðåíòí³ ñïåêëè ñïåêëè, äåôîðìàö³¿, ôðàãìåíòè çîáðàæåííÿ, êðîñ-êîðåëÿö³ÿ.

ÓÄÊ 004.932
Ì. ². Êîáàñÿð, Â. Â. Êîðí³é, Ð. ß. Êîñàðåâè÷, Á. Ï. Ðóñèí
ÃËÎÁÀËÜÍÎ-ËÎÊÀËÜÍÈÉ ÌÅÒÎÄ ÄËß ÑÅÃÌÅÍÒÀÖ²¯ ÒÀ ÀÍÀ˲ÇÓ ÇÎÁÐÀÆÅÍÜ ÇÅÐÅÍ ÌÅÒÀ˲Â
The method for automation of the image segmentation of the metal grains and estimation of their characteristics was offered. The aim of the application is to assist the experts in locating of potentially grain cases for further analysis. The researches are carried out on different types of grains to approve the correctness of the proposed approach.
Key words: image segmentation, metal grains, Radon transfomation.

Çàïðîïîíîâàíî ìåòîä àâòîìàòèçàö³¿ ñåãìåíòóâàííÿ çåðåí ìåòàëó òà îö³íêè ¿õ õàðàêòåðèñòèê. Ìåòîä ðîçðîáëåíîãî ïðîãðàìíîãî çàñîáó º äîïîìîãîþ åêñïåðòàì ï³ä ÷àñ âèçíà÷åííÿ ³ìîâ³ðíèõ çåðåí äëÿ ¿õ ïîäàëüøîãî àíàë³çó. Áóëî ïðîâåäåíî äîñë³äæåííÿ íà ð³çíèõ òèïàõ çåðåí äëÿ àïðîáàö³¿ êîðåêòíîñò³ çàïðîïîíîâàíîãî ï³äõîäó.
Êëþ÷îâ³ ñëîâà: ñåãìåíòóâàííÿ çîáðàæåííÿ, çåðíà ìåòàë³â, ïåðåòâîðåííÿ Ðàäîíà.

ÓÄÊ 004.932
P. À. Âîðîáåëü, ². Á. ²âàñåíêî
ÌÎÐÔÎËÎò×ÍÅ ÏÎÊÐÀÙÀÍÍß ÇÎÁÐÀÆÅÍÜ Ç ÂÈÊÎÐÈÑÒÀÍÍßÌ ËÎÃÀÐÈÔ̲×ÍÈÕ ÏÅÐÅÒÂÎÐÅÍÜ
Generalized basic model for logarithmic image processing is investigated forimage enhancement problem.
Key words: morphologic transformations, image enhancement, logarithmic morphology.

Äîñë³äæåíî âèêîðèñòàííÿ óçàãàëüíåíî¿ áàçîâî¿ ìîäåë³ ëîãàðèôì³÷íî¿ îáðîáêè çîáðàæåíü äëÿ çàäà÷³ ïîêðàùàííÿ çîáðàæåíü.
Êëþ÷îâ³ ñëîâà: ìîðôîëîã³÷í³ ïåðåòâîðåííÿ, ïîêðàùàííÿ çîáðàæåíü, ëîãàðèôì³÷íà ìîðôîëîã³ÿ.

ÌÀÒÅÌÀÒÈ×ÍÅ ÒÀ ÏÐÎÃÐÀÌÍÅ ÇÀÁÅÇÏÅ×ÅÍÍß
ÓÄÊ 519.7
Ä. Î. Ïîë³ùóê, Î. Ä. Ïîë³ùóê, Ì. Ñ. ßäæàê
ÏÎвÂÍßÍÍß ÌÅÒÎIJ ÎÖ²ÍÞÂÀÍÍß ÑÊËÀÄÍÈÕ ÑÈÑÒÅÌ
Methods to evaluation of complex objects and processes and main areas of its application are considered. Necessity is substantiated and method of the search of unsatisfactorily function elements of complex systems on the base of multi parameters and multi criterion analysis of its behavior is proposed.
Key words: complex systems, methods of evaluation, parallel computations, supercomputers.

Ðîçãëÿíóòî ìåòîäè îö³íþâàííÿ ñêëàäíèõ îá'ºêò³â ³ ïðîöåñ³â òà îñíîâí³ ñôåðè ¿õíüîãî çàñòîñóâàííÿ. Îáãðóíòîâàíî íåîáõ³äí³ñòü òà çàïðîïîíîâàíî ìåòîä ïîøóêó íåçàäîâ³ëüíî ôóíêö³îíóþ÷èõ åëåìåíò³â ñêëàäíèõ ñèñòåì íà ï³äñòàâ³ áàãàòîïàðàìåòðè÷íîãî òà áàãàòî-êðèòåð³àëüíîãî àíàë³çó ¿õíüî¿ ïîâåä³íêè.
Êëþ÷îâ³ ñëîâà: ñêëàäí³ ñèñòåìè, ìåòîäè îö³íþâàííÿ, ïàðàëåëüí³ îá÷èñëåííÿ, ñóïåðêîìï'þòåðè.

ÓÄÊ 519.681.5
Î. Ä. Ïîë³ùóê, Ì. ². Òþòþííèê, Ì. Ñ. ßäæàê
ÎÐÃÀͲÇÀÖ²ß ÏÀÐÀËÅËÜÍÈÕ ÎÁ×ÈÑËÅÍÜ ÄËß ËÎÊÀËÜÍÎÃÎ ÎÖ²ÍÞÂÀÍÍß ßÊÎÑÒ² ÔÓÍÊÖ²ÎÍÓÂÀÍÍß ÑÊËÀÄÍÈÕ ÑÈÑÒÅÌ
The parallel-consecutive approach to optimization of calculations for local estimation of quality of functioning of the complex dynamical systems is proposed. This approach is oriented on realization on universal parallel calculational means with common memory.
Key words: complex dynamical systems, local estimation, optimization of calculations, parallel computational means.

Çàïðîïîíîâàíî ïàðàëåëüíî-ïîñë³äîâíèé ï³äõ³ä äëÿ îïòèì³çàö³¿ îá÷èñëåíü ó ðàç³ ëîêàëüíîãî îö³íþâàííÿ ÿêîñò³ ôóíêö³îíóâàííÿ ñêëàäíèõ äèíàì³÷íèõ ñèñòåì. Öåé ï³äõ³ä çîð³ºíòîâàíî äëÿ ðåàë³çàö³¿ íà óí³âåðñàëüíèõ ïàðàëåëüíèõ îá÷èñëþâàëüíèõ "çàñîáàõ ç³ ñï³ëüíîþ ïàì'ÿòòþ.
Êëþ÷îâ³ ñëîâà: ñêëàäí³ äèíàì³÷í³ ñèñòåìè, ëîêàëüíà îö³íêà, îïòèì³çàö³ÿ îá÷èñëåíü, ïàðàëåëüí³ îá÷èñëþâàëüí³ çàñîáè.

ÓÄÊ 519.688
Þ. ß. Êîçàê, Ï. Ã. Ñòàõ³â, ². Ï. Ñòðóáèöüêà
ÐÎÇÏÀÐÀËÅËÅÍÍß ÀËÃÎÐÈÒÌÓ ÎÏÒÈ̲ÇÀÖ²¯ ÏÀÐÀÌÅÒв ÄÈÑÊÐÅÒÍÈÕ ÄÈÍÀ̲×ÍÈÕ ÌÎÄÅËÅÉ ÍÀ ÌÀÑÈÂÍÎ-ÏÀÐÀËÅËÜÍÈÕ ÏÐÎÖÅÑÎÐÀÕ
Method of paralleling task of parameters optimization of discrete dynamic models on massively parallel processors is proposed in this paper. Construct the block diagram of the algorithm, which allows a parallel implementation. Two methods for different areas of parallel algorithm are proposed.
Key words: parallel computation, massively parallel processors, discrete dynamic models, optimization method.

Çàïðîïîíîâàíî ìåòîä ðîçïàðàëåëåííÿ çàäà÷³ îïòèì³çàö³¿ ïàðàìåòð³â äèñêðåòíî¿ äèíàì³÷íî¿ ìîäåë³ íà ìàñèâíî-ïàðàëåëüíèõ ïðîöåñîðàõ. Ïîáóäîâàíî áëîê-ñõåìó àëãîðèòìó, ÿêà äຠçìîãó ïðîâåñòè ïàðàëåëüíó ðåàë³çàö³þ. Çàïðîïîíîâàíî äâà ìåòîäè ðîçïàðàëåëåííÿ äëÿ ð³çíèõ ä³ëÿíîê àëãîðèòìó.
Êëþ÷îâ³ ñëîâà: ïàðàëåëüí³ îá÷èñëåííÿ, ìàñèâíî-ïàðàëåëüí³ ïðîöåñîðè, äèñêðåòí³ äèíàì³÷í³ ìîäåë³, ìåòîä îïòèì³çàö³¿.

ÓÄÊ 004.932
P. À. Âîðîáåëü
ÊÎÍÑÒÐÓÞÂÀÍÍß ÀËÃÅÁÐ ËÎÃÀÐÈÔ̲×ÍÎÃÎ ÒÈÏÓ
Method for construction of logarithmic type algebras is presented. Theorems, which are a base for receiving explicit of expression for addition and multiplication by real scalar operations, are proved. As basic element for construction of proposed algebras is function generator of analytic form. Examples for new logarithmic type algebras are shown.
Key words: algebra, triangular norm, uninorm.

Îïèñàíî ñïîñ³á êîíñòðóþâàííÿ àëãåáð ëîãàðèôì³÷íîãî òèïó. Äîâåäåíî òåîðåìè, ÿê³ º îñíîâîþ îòðèìàííÿ ÿâíîãî âèðàçó îïåðàö³é äîäàâàííÿ òà ìíîæåííÿ íà ä³éñíèé ñêàëÿð. Áàçîâèì åëåìåíòîì êîíñòðóþâàííÿ ðîçãëÿíóòèõ àëãåáð º çàäàíà àíàë³òè÷íî ôóíêö³ÿ-ãåíåðàòîð. Íàâåäåíî ïðèêëàäè íîâèõ àëãåáð ëîãàðèôì³÷íîãî òèïó.
Êëþ÷îâ³ ñëîâà: àëãåáðà, òðèêóòíà íîðìà, óí³íîðìà.

ÏÎIJ¯
ßâîðñüêèé ².Ì.
Ñï³âïðàöÿ Ô³çèêî-ìåõàí³÷íîãî ³íñòèòóòó ³ì. Ã.Â.Êàðïåíêà ÍÀÍ Óêðà¿íè ç ²íñòèòóòàìè ϳâí³÷íîàòëàíòè÷íîãî Àëüÿíñó (ÍÀÒÎ) â îáëàñò³ òåî𳿠ñèãíàë³â
Ïîíîâëåíî:21.06.2006