Home | Ukrainian |
ÓÄÊ 538.3:550.372:620.1:621.6
Ð. Ì. Äæàëà, Á. ß. Âåðáåíåöü, Ì. ². Ìåëüíèê
ÂÏËÈ ÅËÅÊÒÐÎÔ²ÇÈ×ÍÈÕ ÏÀÐÀÌÅÒв ÑÅÐÅÄÎÂÈÙÀ
ÍÀ ªÌͲÑÒÜ ÌÅÒÀËÅÂÎÃÎ ÖÈ˲ÍÄÐÀ Ç ²ÇÎËßÖ²ªÞ
Ô³çèêî-ìåõàí³÷íèé ³íñòèòóò ³ì. Ã. Â. Êàðïåíêà ÍÀÍ
Óêðà¿íè
E-mail: dzhala@ipm.lviv.ua
Íà îñíîâ³ ðîçâ’ÿçêó êðàéîâî¿ çàäà÷³ åëåêòðîäèíàì³êè äëÿ ìåòàëåâîãî öèë³íäðà
ç ³çîëÿö³éíèì øàðîì â åëåêòðîïðîâ³äíîìó ñåðåäîâèù³ âèâåäåíî ôîðìóëè êîìïîíåíò
ïîëÿ îñíîâíî¿ êâàç³-ÒÅÌ õâèë³ ³ åôåêòèâíî¿ ºìíîñò³ ñòðóêòóðè. Âèêîðèñòàíî òåîðåìó Ãàóñà.
Ðîçðàõîâàíî çàëåæíîñò³ åôåêòèâíî¿ ºìíîñò³ â³ä ÷àñòîòè ïîëÿ, åëåêòðîïðîâ³äíîñò³ ñåðåäîâèùà
³ ïðîâ³äíîñò³ ³çîëÿö³¿ ï³äçåìíîãî òðóáîïðîâîäó. Âèÿâëåíî, ùî çà íèçüêèõ åëåêòðîïðîâ³äíîñò³
ñåðåäîâèùà ³ ÷àñòîòè ïîëÿ ôîðìóëà ºìíîñò³ êîàêñ³àëüíîãî êàáåëþ íåïðàâîì³ðíà.
Êëþ÷îâ³ ñëîâà: ºìí³ñòü, ³çîëüîâàíèé öèë³íäð, åëåêòðîìàãíåòíå ïîëå, ÷àñòîòà,
êîàêñ³àëüíèé êàáåëü, ï³äçåìíèé òðóáîïðîâ³ä, ïðîâ³äí³ñòü ñåðåäîâèùà.
R. M. Dzhala, B. Ya. Verbenets, M. I. Melnyk
ELECTRIC CAPACITY OF METAL CYLINDER
WITH AN INSULATING LAYER IN CONDUCTIVE MEDIUM
H. V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine
The electrical capacity of structural elements is needed to research the characteristics
of electromagnetic field parameters for nondestructive testing and diagnosing technical condition.
In theory guiding systems, screening, examinations of underground pipeline capacity formula for
coaxial condenser of ideal design is often used. On the basis of the solution of the boundary
problem of electro-dynamics for a metal cylinder with an insulating layer in electroconductive
medium formulas of field components of quasi-TEM wave and the effective capacity of the structure are received.
Gaussian theorem is used. Calculation of the effective capacity depending on the field frequency,
electrical conductivity of environment and insulation for underground pipeline are calculated.
It is shown that at low environment conductivity and low field frequency using coaxial cable formula is not cored.
When calculating the capacity of the metal structure with the insulating cover in low conductivity medium and at
low frequencies the capacity formula, based on calculations of the electrostatic field charged body should not be applied.
We must use solutions based on electrodynamic problem taking into account the relationship
between the frequency of the field distribution of frequency.
Keywords: capacity, insulated cylinder, electromagnetic field,
frequency, coaxial cable, underground pipeline, conductivity environment.
ÓÄÊ 519.248
Ò. Î. Ñòåôàíîâè÷, Ñ. Â. Ùåðáîâñüêèõ
ÌÎÄÅËÜ ÍÀIJÉÍÎÑÒ² ÄËß ÀÍÀ˲ÇÓ ÏÐÈ×ÈÍ
ÍÅÏÐÀÖÅÇÄÀÒÍÎÑÒ² ÑÈÑÒÅÌÈ ²Ç ÏÅÐÅÄÀÂÀÍÍßÌ
ÔÓÍÊÖ²É Ì²Æ ÎÄÍÎÒÈÏÍÈÌÈ ÌÎÄÓËßÌÈ
Íàö³îíàëüíèé óí³âåðñèòåò “Ëüâ³âñüêà ïîë³òåõí³êà”
E-mail: stefanovych@lp.edu.ua, shcherbov@lp.edu.ua
Çàïðîïîíîâàíî ìàòåìàòè÷íó ìîäåëü íàä³éíîñò³ ñèñòåìè ³ç ïåðåäàâàííÿì ôóíêö³é
ì³æ îäíîòèïíèìè ìîäóëÿìè, ÿêà àäåêâàòíî âðàõîâóº âïëèâ êîåô³ö³ºíòà íàâàíòàæåííÿ äëÿ åëåìåíòà,
ÿêèé ç’ºäíóº îäíîòèïí³ ìîäóë³, íà éìîâ³ðí³ñí³ õàðàêòåðèñòèêè ïðè÷èí íåïðàöåçäàòíîñò³ ñèñòåìè.
Äëÿ âèçíà÷åííÿ õàðàêòåðèñòèê íàä³éíîñò³ çàñòîñîâàíî äèíàì³÷íå äåðåâî â³äìîâ òà ìàðêîâñüêó ìîäåëü.
Êëþ÷îâ³ ñëîâà: ìîäåëü íàä³éíîñò³, äèíàì³÷íå äåðåâî â³äìîâ,
ìàðêîâñüêà ìîäåëü, ïðè÷èíà íåïðàöåçäàòíîñò³, ðåçåðâóâàííÿ.
T. O. Stefanovych, S. V. Shcherbovskykh
RELIABILITY MODEL FOR FAILURE CAUSE ANALYSIS OF A SYSTEM
WITH FUNCTION TRANSFERING BETWEEN UNIFORM MODULUS
Lviv Polytechnic National University
The mathematical reliability model for system with function transferring between
uniform modulus is proposed. Function transferring is used for system reliability improving.
The model is formed for failure cause analysis of such system. The reliability is formalized
based on dynamic fault tree. Special repeater gate block is used for load-sharing condition definition.
In particular, the gate block provides adequately taking into account load-sharing processes for
connecting component that is installed between uniform modulus. For failure cause characteristics
calculation dynamic fault tree is transformed to Markov model. The Markov model is created based on
tensor formulas that taking into account component life distributed by Weibull. Using
the simulation results failure cause priority is determined.
Keywords: reliability model, dynamical fault tree,
Markov model, failure cause, redundancy.
ÓÄÊ 535.361: 620.186
². Á. ²âàñ³â
ÎÖ²ÍÊÀ ÐÎÇ̲в ÊÎÐÎDzÉÍÈÕ ÂÈÐÀÇÎÊ ÇÀ ÊÐÈÒÅвªÌ
ÃËÀÄÊÎÑÒ² ÎÁ²ÄÍί ÑÈÃÍÀËÓ ÑÅÍÑÎÐÀ
ÄÈÔÓÇÍÎÃΠ²ÄÁÈÂÀÍÍß Ñ²ÒËÀ
Ô³çèêî-ìåõàí³÷íèé ³íñòèòóò ³ì. Ã. Â. Êàðïåíêà ÍÀÍ Óêðà¿íè
E-mail: greg@ipm.lviv.ua
Çàïðîïîíîâàíî ìåòîä îö³íþâàííÿ ðîçì³ð³â òî÷êîâèõ êîðîç³éíèõ ì³êðîäåôåêò³â
ìåòàëåâèõ ïîâåðõîíü íà îñíîâ³ àíàë³çó äðóãî¿ ïîõ³äíî¿ ñèãíàëó ïðèçìàòè÷íîãî
ñåíñîðà äèôóçíîãî â³äáèâàííÿ ñâ³òëà, çîêðåìà êðèòåð³¿â ãëàäêîñò³, ÿê³ áàçóþòüñÿ
íà íîðìàõ ö³º¿ ïîõ³äíî¿. Ïîêàçàíî, ùî ó ä³àïàçîíàõ ðîçì³ð³â ì³êðîäåôåêò³â 2...8 ìêì òà 6... 12 ìêì
çàëåæí³ñòü çàïðîïîíîâàíèõ êðèòåð³¿â â³ä ðîçì³ðó áëèçüêà äî ë³í³éíî¿.
Êëþ÷îâ³ ñëîâà: êîðîç³éí³ âèðàçêè, îö³íþâàííÿ ðîçì³ð³â, îïòè÷íèé ñåíñîð,
äèôóçíå â³äáèâàííÿ ñâ³òëà, ìîäåëþâàííÿ, ñèãíàë, êðèòå𳿠ãëàäêîñò³.
I. B. Ivasiv
CORROSION POINTS SIZING BY SMOOTHNESS CRITERION
FOR SIGNAL ENVELOPE OF LIGHT DIFFUSE REFLECTION SENSOR
H. V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine
The method of sizing the corrosion point microdefects for metal surfaces is proposed
on the base of the signal of the prismatic sensor of diffuse light reflection.
Based on differential formulae the second derivatives of modelled signal are analysed.
It is shown that these derivatives behaviour depends on the microdefects sizes more obviously.
In particular, the several smoothness criteria based on the Euclidian, square
Euclidian norms for the second derivatives as well as on the inversed norms are proposed.
These criteria showed the unambiguous dependence on the size of corrosion microdefects and
even near linear dependences within 2... 8 pm subrange for the quadratic Euclidian norm criterion
and within 6... 12 pm subrange for the inverse Euclidian norm criterion.
Keywords: corrosion points, sizing, optical sensor, diffuse light reflection,
modelling, signal, smoothness criteria.
ÓÄÊ 519.6
À. Ë. ªðîõ³í, Ã. À. Çàöåðêëÿíèé
ÀÍÀË²Ç ÒÅÏËÎÌÀÑÎÎÁ̲ÍÓ Â ÏÐÈ̲ÙÅÍͲ ÁÓIJÂ˲
Õàðê³âñüêèé íàö³îíàëüíèé óí³âåðñèòåò ðàä³îåëåêòðîí³êè
E-mail: andriy.yerokhin@nure.ua, george.zatserklyany@gmail.com
Çàïðîïîíîâàíî ³íôîðìàö³éíó òåõíîëîã³þ àíàë³çó êîíâåêòèâíîãî òåïëîîáì³íó â ïðèì³ùåíí³
áóä³âë³ â íàáëèæåíí³ íåñòàö³îíàðíîãî òðèâèì³ðíîãî òóðáóëåíòíîãî ïîòîêó äâîêîìïîíåíòíî¿
ïàðîïîâ³òðÿíî¿ ñóì³ø³ çà íàÿâíîñò³ âíóòð³øí³õ äæåðåë ³ ñòîê³â åíåð㳿.
Êëþ÷îâ³ ñëîâà: ³íôîðìàö³éíà òåõíîëîã³ÿ, ìîäåëü,
íåñòàö³îíàðí³é òðèâèì³ðíèé òóðáóëåíòíèé ðóõ, ïàðîïîâ³òðÿíà ñóì³ø.
A. L. Yerokhin, H. A. Zatserklyanyi
HEAT AND MASS EXCHANGE ANALYSIS INDOORS
Kharkiv National University of Radio Electronics
The information technology of convective heat exchange analysis indoors within
the limits of a non-stationary three-dimensional turbulent flow of two-component
steam-air mixture in the presence of internal sources and sinks of energy is proposed.
Turbulence modeling is based on a Menter’s SST-model, which is a combination
of known k-c and k-oi models. In this case we use several types of boundary conditions,
including permeable boundary conditions within the calculated area (input and output),
boundary conditions on a solid impermeable wall, boundary conditions of symmetry,
periodic boundary conditions. For numerical implementation of convective heat
and mass exchange indoors we use the finite volumes method.
Keywords: model, non-stationary three-dimensional turbulent flow, steam-air mixture.
ÓÄÊ 681.7: 621.396
Î. Ï. Ìàêñèìåíêî
ÀÍÀË²Ç ÏÎÕÈÁÎÊ ÃÅÎÌÅÒÐÈ×Íί ÊÎÐÅÊÖ²¯ ÑÏÅÊË-ÇÎÁÐÀÆÅÍÜ
ÍÀ ÎÑÍβ ÏÅÐÅÒÂÎÐÅÍÍß ÔÓÐ’ª-ÌÅ˲ÍÀ
Ô³çèêî-ìåõàí³÷íèé ³íñòèòóò ³ì. Ã. Â. Êàðïåíêà ÍÀÍ Óêðà¿íè
E-mail: maksymenko@ipm.lviv.ua
Ïðîàíàë³çîâàíî ïîõèáêè, ÿê³ âèíèêàþòü ï³ä ÷àñ âèçíà÷åííÿ ïàðàìåòð³â â³äíîñíèõ ãåîìåòðè÷íèõ
òðàíñôîðìàö³é ñïåêë-çîáðàæåíü, òà ïîêàçàíî ¿õ âïëèâ íà òî÷í³ñòü âñòàíîâëåííÿ ä³éñíèõ äåôîðìàö³é ïîâåðõí³.
Îòðèìàíî àíàë³òè÷í³ âèðàçè äëÿ îö³íþâàííÿ ïîõèáîê òà øëÿõîì êîìï’þòåðíîãî ìîäåëþâàííÿ
ïîêàçàíî ñïðàâåäëèâ³ñòü òàêèõ îö³íîê. Äëÿ êðàùîãî âèÿâëåííÿ ³íôîðìàòèâíîãî êðîñ-êîðåëÿö³éíîãî ï³êà
çàïðîïîíîâàíî âèêîðèñòîâóâàòè âèñîêî÷àñòîòíó ô³ëüòðàö³þ ñïåêòðàëüíèõ àìïë³òóä ïåðåä ëîã-ïîëÿðíèì ïåðåòâîðåííÿì.
Êëþ÷îâ³ ñëîâà: öèôðîâà êîðåëÿö³ÿ çîáðàæåíü, ëîã-ïîëÿðíå ïåðåòâîðåííÿ Ôóð’º-Ìåë³íà,
îö³íêà ïîõèáîê, ãåîìåòðè÷íà êîðåêö³ÿ ñïåêë-çîáðàæåíü.
Î. P. Maksymenko
ANALYSIS OF THE ERRORS OF GEOMETRICAL CORRECTION
OF SPECKLE IMAGES BASED ON FOURIER-MELLIN TRANSFORM
H. V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine
The errors of an algorithm then determining parameters of the relative geometric
transformations of the speckle images, based on log-polar Fourier Melina transform are analyzed.
The analytical expressions for estimation of the errors in determining the relativity rotation
and scaling are proposed. The computer simulation based on speckle images modeling confirms the
validity of the proposed analytical expressions. Results presented in this paper show the linearity
of the relativity rotation angle error and is inversely proportional to the size of the speckle image,
while the error set of the scale is nonlinear. For reliable detection of the informative conelation peak,
the high-frequency filtering of the spectrum amplitude of the speckle image, before the log-polar transform is used.
The results obtained in the work allow assessing the enors which arise when
the geometrical transformations of speckle images are present and its influence on the accuracy
of the actual deformation fields calculated after correction of the transformation of speckle images.
Keywords: digital image correlation, Fourier-Mellin log-polar transform,
errors estimation, geometrical correction of speckle-images.
ÓÄÊ 620.179
². Á. ²âàñåíêî
ÂÈÇÍÀ×ÅÍÍß ÐÎÇ̲в ÍÅÏÐÎÂÀв ÍÀ ÎÖÈÔÐÎÂÀÍÈÕ
ÐÅÍÒÃÅÍÎÃÐÀÌÀÕ ÇÂÀÐÍÈÕ Ø²Â
Ô³çèêî-ìåõàí³÷íèé ³íñòèòóò ³ì. Ã. Â. Êàðïåíêà ÍÀÍ Óêðà¿íè
E-mail: ivasenko@ipm.lviv.ua
Çàïðîïîíîâàíî ìåòîä âèçíà÷åííÿ ãåîìåòðè÷íèõ ðîçì³ð³â íåïðîâàð³â.
Äëÿ öüîãî ëîêàë³çîâàíî êàíàâêîâèé åòàëîí ÷óòëèâîñò³, îö³íåíî ãëèáèíó
ïåðåïàä³â êàíàâîê ó ð³âíÿõ ñ³ðîãî, âèçíà÷åíî ïàðàìåòð íåð³çêîñò³ çîáðàæåííÿ.
Ñåãìåíòîâàíî íåïðîâàðè â çîí³ çâàðíîãî øâà, âèçíà÷åíî ¿õ ðîçì³ðè çà åòàëîíîì ÷óòëèâîñò³.
Ìåòîä àïðîáîâàíî íà ðåàëüíèõ çîáðàæåííÿõ çâàðíèõ øâ³â.
Êëþ÷îâ³ ñëîâà: çâàðí³ øâè, äåôåêòè, îáðîáêà çîáðàæåíü, ñåãìåíòàö³ÿ.
I. B. Ivasenko
DETERMINING THE GEOMETRIC DIMENSIONS OF LACK
OF PENETRATION ON DIGITAL RADIOGRAPHIC IMAGES
OF WELDED JOINTS
H. V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine
Radiographic control of joint welds is often used to test the quality of oil
and gas pipelines, technological and industrial pipes. The problem of automatic
welding quality control is still not fully solved. The method of determining
the geometric dimensions of lack of penetration on scanned X-ray films of tubes is proposed.
For this aim, we locate the groove-type standard, estimate the groove depth in gray levels
and determine the image blur parameter. Then we divide the lacks of penetration in the weld
zone using superposition of single-scale implementations of retinex on the basis of local smoothing,
evaluate defects size and depth by the groove-type standard. The method was tested on real images
of welded joints and compared with measurements by a cathetometer.
Keywords: weld joints, defects, image processing, segmentation.
ÓÄÊ 004.932
Î. Ð. Áåðåãóëÿê, Ð. À. Âîðîáåëü
ÂÈвÂÍÞÂÀÍÍß ÎѲÒËÅÍÎÑÒ² ÎÁ’ªÊҲ ÑÖÅÍÈ
Ç ÂÈÊÎÐÈÑÒÀÍÍßÌ ËÎÃÀÐÈÔ̲×ÍÎÃÎ ÏÅÐÅÒÂÎÐÅÍÍß
Ô³çèêî-ìåõàí³÷íèé ³íñòèòóò ³ì. Ã. Â. Êàðïåíêà ÍÀÍ
Óêðà¿íè
E-mail: oberehulyak@ipm.lviv.ua, roman.vorobel@gmail.com
Ïðîàíàë³çîâàíî ïðîáëåìó âèð³âíþâàííÿ îñâ³òëåíîñò³ îá’ºêò³â íà çîáðàæåíí³ ñöåíè.
Âèÿâëåíî, ùî ìîæëèâèì ¿¿ ðîçâ’ÿçêîì º çàñòîñóâàííÿ îäíîìàñøòàáíîãî ðåòèíåêñó,
çàïî÷àòêîâàíîãî â ïðàöÿõ Å. Ëåíäà. Îïèñàíî áàçîâó ìîäåëü îäíîìàñøòàáíîãî ðåòèíåêñó.
Ïîêàçàíî, ùî â éîãî îñíîâ³ - ³íâåðñ³ÿ â³äíîñíîãî ëîêàëüíîãî êîíòðàñòó. Äëÿ çàáåçïå÷åííÿ ìîæëèâîñò³
âèáîðó îïòèìàëüíîãî çà ðîçð³çíåííÿì ðåçóëüòóþ÷îãî çîáðàæåííÿ ïîáóäîâàíî ïàðàìåòðè÷íó ìîäåëü âèð³âíþâàííÿ
îñâ³òëåíîñò³, ÿêà ´ðóíòóºòüñÿ íà ëîãàðèôì³÷íîìó ïåðåòâîðåíí³ ³íâåðñ³¿ çâàæåíîãî êîíòðàñòó.
Íàâåäåíî ðåçóëüòàòè îïðàöþâàííÿ ñèíòåçîâàíîãî çîáðàæåííÿ. Ïðî³ëþñòðîâàíî ê³ëüê³ñíèé âèá³ð
îïòèìàëüíî ïåðåòâîðåíîãî çîáðàæåííÿ çà îçíàêîþ á³ëüøîãî ðîçð³çíåííÿ äåòàëåé ó âñüîìó ä³àïàçîí³ ³íòåíñèâíîñòåé.
Êëþ÷îâ³ ñëîâà: îïðàöþâàííÿ çîáðàæåíü, ðåòèíåêñ, ëîãàðèôì³÷íå ïåðåòâîðåííÿ, âèð³âíþâàííÿ îñâ³òëåíîñò³.
O. R. Berehulyak, R. A. Vorobel
LUMINOSITY EQUALIZATION OF SCENES OBJECTS USING
THE LOGARITHMIC TRANSFORMATION
H. V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine
The problem of luminosity equalization on the image of scene is considered. It is shown
that usage of single scale retinex, launched by E. Land, is its possible solution.
The basic model of single scale retinex is analyzed. It is shown that this model is based
on the usage of local contrast inversion. The parametric model of luminosity equalization
is built to ensure optimal choice of the resulting image by the distinction. It is based
on logarithmic transformation of inversion of weighted contrast. The results of the synthesized
image processing are shown. The quantitative selection of optimally processed image on the basis
of better details distinguishing in full range of intensities is illustrated.
Keywords: image processing, retinex, logarithmic transformation, luminosity equalization.
ÓÄÊ 004.738.5
Â. Â. Ëèòâèí, Î. ². Ðåìåøèëî-Ðèá÷èíñüêà, Â. À. Âèñîöüêà
ÏÎÁÓÄÎÂÀ ÎÍÒÎËÎò¯ ÀÐÕ²ÒÅÊÒÓÐÍÈÕ ÒÅÐ̲ͲÂ
Íàö³îíàëüíèé óí³âåðñèòåò “Ëüâ³âñüêà ïîë³òåõí³êà”
E-mail: Victoria.A.Vysotska@lpnu.ua
Çàïðîïîíîâàíî ìåòîä ïîáóäîâè îíòîëî㳿 àðõ³òåêòóðíèõ òåðì³í³â äëÿ ïîäàííÿ ³
ðîçïîä³ëó çíàíü çàãàëüíîãî ñëîâíèêîâîãî çàïàñó ³ ï³äòðèìêè ³íòåëåêòóàëüíèõ çàïèò³â
ó áàçàõ äàíèõ ç àðõ³òåêòóðè, à òàêîæ àâòîìàòèçîâàíîãî îáì³íó äàíèìè òà ³íòåãðàö³¿
íàâ÷àëüíèõ ïðîãðàì ç àðõ³òåêòóðè. Àïðîáîâàíî ¿¿ é äëÿ ïîøóêó ðåëåâàíòíî¿ ³íôîðìàö³¿, à ñàìå,
äëÿ âèá³ðêè ñòîð³íîê ó ìåðåæ³ ²íòåðíåò ³ç ñèíòàêñè÷íî ð³çíèìè, àëå ñåìàíòè÷íî îäíàêîâèìè àðõ³òåêòóðíèìè òåðì³íàìè.
Êëþ÷îâ³ ñëîâà: îíòîëîã³ÿ, àðõ³òåêòóðíèé òåðì³í, ïîíÿòòÿ, â³äíîøåííÿ, ìíîæèíà.
V. V. Lytvyn, Î. I. Remeshylo-Rybchynska, V. A. Vysotska
ARCHITECTURAL TERMS ONTOLOGY CONSTRUCTION
National University “Lviv Polytechnics”
The method of the architectural ontology terms development is proposed.
It can be used as a mechanism for the provision and distribution of knowledge
for definition of the general vocabulary and intellectual queries support in
databases on architecture and support of data automated exchange and the architectural
educational programs integration. It is proposed to use it for a relevant information search.
For example, it is used for sampling pages from the Internet with syntactically different,
but semantically identical architectural terms. The content of the research is to solve the
application problem of ontology building for intelligent systems of information resources processing
of the architectural structure (thesauruses, Web-resources, e-distance learning resources,
educational programs, scientific publications, etc.) for textual data sets analyzing of architectural domains.
The knowledge base ontology use in intelligent systems for information resources processing
of architectural profile helps to solve a number of problems of methodological and technological
character that arise during the development of such systems. In particular, Ukraine has a problem
of the lack of conceptual integrity and coherence of individual techniques and knowledge on engineering
methods for the development of appropriate systems in this area; lack of qualified specialists for
software development of architectural direction; stiffness of developed software tools and their low
adaptive capacity; complexity of the intelligent systems implementation for information resources processing
of architectural profile, due to the psychological aspects. All this demonstrates and confirms the relevance
of research problems using ontologies in intelligent systems building for information resources processing.
Keywords: ontology, architecture, term, architectural terms, concepts, relations, set.
ÓÄÊ 004.42+519.876.5
À. Â. Âåðåì÷óê, À. Â. Ïóêàñ, ². Ô. Âîéòþê
ÏÐÎÅÊÒÓÂÀÍÍß ÏÐÎÃÐÀÌÍÎÃÎ ÇÀÁÅÇÏÅ×ÅÍÍß
ÄËß ²ÄÅÍÒÈÔ²ÊÀÖ²¯ ²ÍÒÅÐÂÀËÜÍÈÕ ÌÎÄÅËÅÉ ÎÁ’ªÊÒ²Â
Ç ÐÎÇÏÎIJËÅÍÈÌÈ ÏÀÐÀÌÅÒÐÀÌÈ
Òåðíîï³ëüñüêèé íàö³îíàëüíèé åêîíîì³÷íèé óí³âåðñèòåò
E-mail: a.veremchuk@tneu.edu.ua, apu@tneu.edu.ua, i.voytyuk@tneu.edu.ua
Ïîäàíî ñòðóêòóðó ïðîãðàìíî¿ ñèñòåìè äëÿ ìàêðîìîäåëþâàííÿ îá’ºêò³â ç ðîçïîä³ëåíèìè ïàðàìåòðàìè
íà îñíîâ³ ³íòåðâàëüíèõ ð³çíèöåâèõ îïåðàòîð³â. Ðîçðîáëåíî ïðîåêò ñèñòåìè, ùî çàáåçïå÷óº
³íòåãðóâàííÿ ìåòîä³â ñòðóêòóðíî¿ òà ïàðàìåòðè÷íî¿ ³äåíòèô³êàö³¿ (ìåòîäè ïîáóäîâàí³
íà ðåçóëüòàòàõ äîñë³äæåííÿ ïîâåä³íêè áäæîëèíî¿ êîëîí³¿, ãåíåòè÷íèõ àëãîðèòìàõ,
øòó÷íèõ íåéðîííèõ ìåðåæàõ ç âèêîðèñòàííÿì ðàä³àëüíî-áàçèñíèõ ôóíêö³é, âèïàäêîâîãî
ïîøóêó ç³ çàñòîñóâàííÿì íàïðÿìíîãî êîíóñà) â ºäèíèé êîìïëåêñ.
Êëþ÷îâ³ ñëîâà: ðîçïîä³ëåí³ ïàðàìåòðè, ìàòåìàòè÷íà ìàêðîìîäåëü, ³íòåðâàëüíèé ð³çíèöåâèé îïåðàòîð,
ìåòîäè ³äåíòèô³êàö³¿, ïðîãðàìíå çàáåçïå÷åííÿ.
A. V. Veremchuk, A. V. Pukas, I. F. Voytyuk
DESIGN OF THE SOFTWARE FOR IDENTIFICATION OF THE INTERVAL
MODELS OF OBJECTS WITH DISTRIBUTED PARAMETERS
Ternopil National Economic University
The design of structure and interface of a software system for macromodelling
complex objects with distributed parameters, based on interval difference operator (IDO) are described.
The developed software provides integration of the methods of structure identification
(Artificial Bee Colony and genetic algorithms) and parameter identification (method based
on artificial neural networks with radial basis functions and the method of random search using
director cone method) to a single set. It makes it possible to simplify the macromodelling process.
In particular researcher can determinei different parameters of methods and build IDO using a single software.
Another advantage of the proposed software is the possibility to compare the obtained results with
previously stored ones and make some decision about suitability of used methods of identification
for researching an object with distributed parameters. Only the design stage of the software
development of the life cycle is described. Next task for research will be to develop and test the software system.
Keywords: complex object, distributed parameters, macromodel,
interval difference operator, methods of identification, software system.