Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2018. Issue 46 (122)
Segmentation of corrosion damage images with unknown background by energy minimization
Mandziy T. S.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Ivasenko I. B.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2018.46.038
Keywords: image processing, segmentation, rust, graph cuts
Cite as: Mandziy T. S., Ivasenko I. B. Segmentation of corrosion damage images with unknown background by energy minimization. Information Extraction and Processing. 2018, 46(122), 38-42. DOI:https://doi.org/10.15407/vidbir2018.46.038
Download
Abstract
The problem of rusted areas segmentation on painted constructions is considered. The rust percentage on the coatings can be computed using digital image processing methods. Segmentation method by energy minimization using graph cut is applied. The results demonstrate that the proposed approach can be effectively used for rust segmentation.
References
1. Pidaparti, R.; Hinderliter, B.; Maskey, D. Evaluation of Corrosion Growth on SS304 Based on Textural and Color Features from Image Analysis. ISRN Corrosion. 2013; 1-7.
https://doi.org/10.1155/2013/376823
2. Tsutsumi, F.; Murata, H.; Onoda, T.; Oguri, O.; Tanaka, H. Automatic corrosion estimation using galvanized steel images on power transmission towers. In Transmission & Distribution Conf. & Exposition: Asia and Pacific. 2009.
https://doi.org/10.1109/TD-ASIA.2009.5356961
3. Shen, H.-K.; Chen, P.-H.; Chang, L.-M. Automated Rust Defect Recognition Method Based on Color and Texture Feature. Automation in Construction. 2013; 31, 338-356.
https://doi.org/10.1016/j.autcon.2012.11.003
4. Trujillo, M.; Sadki, M. Sensitivity analysis for texture models applied to rust steel classification. In Proc. SPIE 5303, Machine Vision Applications in Industrial Inspection XII. May 3, 2004.
https://doi.org/10.1117/12.526838
5. Bento, M.; Medeiros, F.; Paula, I. Jr; Ramalho, G. Image Processing Techniques applied for Corrosion Damage Analysis. In XXII Conf. on Graphics, Patterns and Images. Rio de Janeiro: SIBGRAPI, 2009.
6. Pidaparti, R.; Hinderliter, B.; Maskey, D. Evaluation of Corrosion Growth on SS304 Based on Textural and Color Features from Image Analysis. ISRN Corrosion. 2013; 2013, 1-7.
https://doi.org/10.1155/2013/376823
7. Shen, H.-K.; Chen, P.-H.; Chang, L.-M. Human-visual-perception-like intensity recognition for color rust images based on artificial neural network. Automation in Construction. 2018; 90, 178-187,
https://doi.org/10.1016/j.autcon.2018.02.023
8. Petricca, L.; Moss, T.; Figueroa, G.; Broen, S. Corrosion Detection Using A. I: A Comparison of Standard Computer Vision Techniques and Deep Learning Model. Computer Sci. & Information Techn. 2016; 6, 91-99.
https://doi.org/10.5121/csit.2016.60608
9. Liu, W.-T.; Bai, B.-S.; Chen, P.-H. Development of smartphone application for realtime steel rust recognition. In Proc. of the 34rd ISARC. Taiwan: Taipei, 2017; 506-508.
https://doi.org/10.22260/ISARC2017/0070
10. Liao K.-W.; Lee Y.-T. Detection of rust defects on steel bridge coatings via digital image recognition. Automation in Construction. 2016; 71(2), 294-306.
https://doi.org/10.1016/j.autcon.2016.08.008
11. Son, H.; Hwang, N.; Changmin, K.; Kim, C. Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems. Automation in Construction. 2014; 42, 13-24.
https://doi.org/10.1016/j.autcon.2014.02.016
12. Xu, S.; Weng Y. A new approach to estimate fractal dimensions of corrosion images. Pattern Recognition Letters. 2006; 27(16), 1942-1947.
https://doi.org/10.1016/j.patrec.2006.05.005
13. Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. 1986; 48, 259-302.
https://doi.org/10.1111/j.2517-6161.1986.tb01412.x
14. Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated annealing. Science. 1983; 220, 671-680.
https://doi.org/10.1126/science.220.4598.671
15. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell. 2001; 23, 1222-1239.
https://doi.org/10.1109/34.969114
16. Felzenszwalb, P. F.; Huttenlocher, D. P. Efficient belief propagation for early vision. Int. J. of Computer Vision. 2006; 70(1), 41-54.
https://doi.org/10.1007/s11263-006-7899-4