Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2019. Issue 47 (123)
Diffraction of normal SH-wave from a semi-infinite rigid inclusion in an elastic layer
Voytko M. V.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Kulynych Ya.P.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2019.47.012
Keywords: elastic layer, inclusion, diffraction, normal SH-wave, Wiener-Hopf technique
Cite as: Voytko M. V., Kulynych Ya.P. Diffraction of normal SH-wave from a semi-infinite rigid inclusion in an elastic layer. Information Extraction and Processing. 2019, 47(123), 12-19. DOI:https://doi.org/10.15407/vidbir2019.47.012
Abstract
The Fourier integral transform is used to reduce the diffraction problem of the normal SH-wave on a semi-infinite rigid inclusion in elastic layer to the Wiener–Hopf equation. Its solution is obtained by the factorization method. The analytical expressions of the diffracted displacement fields are represented in any region of interest. The dependences of the scattered field on the parameters of the structure are given. The properties of identification of the inclusion type defect in the plane layer are illustrated.
References
1. Nazarchuk, Z., Muravsky, L., Kuryliak, D. To the problem of the subsurface defects detection: theory and experiment Procedia Structural Integrity 2019, 16, 11-18.
https://doi.org/10.1016/j.prostr.2019.07.016
2. Thomas, B. P.; Annamala, P. S.; Narayanamurthy, C. S. Investigation of vibration excitation of debonded sandwich structures using time-average digital holography Appl. Opt. 2017, 56, F7-F1.
https://doi.org/10.1364/AO.56.0000F7
3. Fomitchov, P.; Wang, L.-S.; Krishnaswamy, S. Advanced image-processing techniques for automatic nondestructive evaluation of adhesively-bonded structures using speckle interferometry J. Nondestruct. Eval. 1997, 16, 215-227.
https://doi.org/10.1023/A:1021848031529
4. Pouet, B. F.; Krishnaswamy, S. Synchronized reference updating technique for electronic speckle interferometry J. Nondestruct. Eval. 1993, 12, 133-138.
https://doi.org/10.1007/BF00567569
5. Pouet, B. F.; Krishnaswamy, S. Additive-subtractive phase-modulated electronic speckle interferometry: analysis of fringe visibility Appl. Opt. 1994, 33, 6609-6616.
https://doi.org/10.1364/AO.33.006609
6. Stoykova, E.; Berberova, N.; Kim, Y.; Nazarova, D.; Ivanov, B.; Gotchev, A.; Hong, J.; Kang, H. Dynamic speckle analysis with smoothed intensity-based activity maps Opt. Lasers Eng. 2017, 93, 55-65.
https://doi.org/10.1016/j.optlaseng.2017.01.012
7. Voytko, M. V.; Kutlyk, M. M.; Kuryliak, D. B. The resonant scattering of SH-waves by a finite crack in an elastic layer Bul.l T. Shevchenko Nat. Univ. Kyiv, Spec. Issue, Ser. Phys. & Math. 2015, 51-54. (in Ukrainian)
8. Nazarchuk, Z. T.; Kuryliak, D. B.; Voytko, M. V.; Kulynych, Ya. P. On the interaction of an elastic SH-wave with an interface crack in the perfectly rigid joint of a plate with a half-space J. Math. Sci. Aug. 2013, 192, 609-623.
https://doi.org/10.1007/s10958-013-1420-8
9. Kurylyak, D. B.; Nazarchuk, Z. T.; Voitko, M. V. Analysis of the field of a plane SH-wave scattered by a finite crack on the interface of materials Mater. Sci. 2006, 42, 711-724.
https://doi.org/10.1007/s11003-006-0139-9
10. Rokhlin, S. I. Resonance phenomena of Lamb waves scattering by a finite crack in a solid layer J. Acoust. Soc. Am. 1981, 69, 922-928.
https://doi.org/10.1121/1.385614
11. Voytko, M. V.; Kulynych, Ya. P.; Kuryliak, D. B. Resonant scattering of the SH-wave by the interface impedance defect in an elastic layer. In Proceedings of 16th International Conference on Mathematical Methods in Electromagnetic Theory (MMET-2016), Lviv, Ukraine, July 5-7, 2016 (USB-DRIVE); 264-267.
https://doi.org/10.1109/MMET.2016.7544076
12. Semkiv, M. Ya.; Zrazhevskyi, H. M.; Matsypura, V. T. Diffraction of normal SH-waves in a waveguide with a crack Acoust. Bull. 2011, 14, 57-69. (in Ukrainian)
13. Mittra, R.; Lee, S. W. Analytical Techniques in the Theory of Guided Waves, New York: Macmillan, 1971. 14. Noble, B. Methods based on the Wiener-Hopf technique for the solution of partial differential equations Belfast, Northern Ireland: Pergamon Press, 1958.