Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2019. Issue 47 (123)
Speckle correlation method for monitoring of localized corrosion degree in water environment
Lychak O. V.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2019.47.059
Keywords: localized corrosion degree, correlation coefficient measurement, speckle signal
Cite as: Lychak O. V. Speckle correlation method for monitoring of localized corrosion degree in water environment. Information Extraction and Processing. 2019, 47(123), 59-72. DOI:https://doi.org/10.15407/vidbir2019.47.059
Download
Abstract
A new correlation-based method for evaluation of the degree of localized corrosion damage on rough surface using video inspection data signal is proposed. The possibility to evaluate very low values of corrosion degree in the presence of high-level noises, typical of water/underwater inspection of constructions is a key advantage of the proposed method. Results of the correla tion measurement system calibration and evaluation of its accuracy are presented. Parameters of signals models are obtained from laboratory experiments for pitting corrosion testing of steel samples.
References
1. Iaquinta, J.; Fouilloux, A. Modeling of light scattering by rough surfaces with relevance to pavements monitoring sensors Optics and lasers in engineering 2004, 41(5), 687-702
https://doi.org/10.1016/S0143-8166(03)00057-5
2. Pistorius, P. C.; Burstein, G. T. Metastable pitting corrosion of stainless steel and the transition to stability Royal Society Philosophical Transactions of the London. Series A: Physical and Engineering Sciences 1992, 341(1662), 531-559
https://doi.org/10.1098/rsta.1992.0114
3. Pistorius, P. C.; Burstein, G. T. Detailed Investigation of Current Transients from Metastable Pitting Events on Stainless Steel - The Transition to Stability Materials Science Forum, 1992, 111-112, 429-452.
https://doi.org/10.4028/www.scientific.net/MSF.111-112.429
4. Burstein, G. T.; Pistorius, P. C. Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride Solutions CORROSION 1995, 51(5),380-385.
https://doi.org/10.5006/1.3293603
5. Williams, D. E.; Westcott, C.; Fleischmann, M.. Stochastic Models of Pitting Corrosion of Stainless Steels I. Modeling of the Initiation and Growth of Pits at Constant Potential J. Electrochem. Soc 1985, 132(8), 1796-1804.
https://doi.org/10.1149/1.2114220
6. Fricke-Begemann, T.; G lker, G.; Hinsch, K. D.; Wolff, K. Corrosion Monitoring with Speckle Correlation Appl. Opt 1999, 38(28), 5948-5955.
https://doi.org/10.1364/AO.38.005948
7. Andr s, N.; Recuero, S.; Arroyo, M. P.; Bona, M. T.; Andr s, J. M.; Angurel, L. A. Fast visualization of corrosion processes using digital speckle photography Corr. Sci. 2008, 50(10), 2965-2971
https://doi.org/10.1016/j.corsci.2008.08.001
8. Hinsch, K. D.; Fricke-Begemann, T.; G lker, G.; Wolff, K. Speckle correlation for the analysis of random processes at rough surfaces. Optics and Lasers in Eng. 2000, 33(2), 87-105.
https://doi.org/10.1016/S0143-8166(00)00035-X
9. Recuero, S.; Bona, M. T.; Andr s, N.; Andr s, J. M.; Angurel, L. A. Visualisation of environmental degradation in ceramic superconductors using digital speckle photography J. of the European Ceramic Society 2008, 28(11), 2239-2246.
https://doi.org/10.1016/j.jeurceramsoc.2008.02.024
10. Chiang, Fu-Pen Nondestructive and Noncontact Evaluation of Corrosion and Fatigue by Laser Speckle Sensor (LSS) and Laser Moire, State University of New York at Stony Brook; Stoney Brook NY, 1998.
https://doi.org/10.21236/ADA340357
11. Goodman, J. W. Statistical optics, Wiley Classic Library Edition; JOHN WILEY & SONS INC.: New York, 2000.
12. Bonett, D.G. 2016. Sample Size Planning for Behavioral Science Research http://people.ucsc.edu/~dgbonett/sample.html. 13. Korn, G. A. Korn, T. M. Mathematical handbook for scientists and engineers definitions theorems and formulas for reference and review ;McGRAW-HILL BOOK COMPANY INC.: NEW YORK, 1961.
14. Simushkin, S.V. Multivariate statistical analysis; Kazan State University: Kazan, 2006.(in russian)