Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2020. Issue 48 (124)
Use of object shape priors for fractographic image segmentation
Mandziy T.S.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2020.48.086
Keywords: image segmentation; level set method; shape priors.
Cite as: Mandziy T.S. Use of object shape priors for fractographic image segmentation. Information Extraction and Processing. 2020, 48(124), 86-91. DOI:https://doi.org/10.15407/vidbir2020.48.086
Download
Abstract
Approach to efficient level-set model with shape priors for images segmentation is considered. The use of edge based level-set model in combination with principal component analysis (PCA) based shape priors for image segmentation is investigated. Shape priors considered as a tool to cope with proper segmentation of overlapping or partially visible objects on input image. It is argued that in some cases consequent optimization of different groups of parameters can be advantageous in comparison to simultaneous optimization of all parameters. The approach was applied for segmentation of fractographic images obtained by scanning electron microscope (SEM). Experimental results for image segmentation using level-set model with shape priors are presented.
References
1. Mumford, D.; Shah, J. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math., 1989, 42(5), 577-685.
https://doi.org/10.1002/cpa.3160420503
2. Chan, T.; Vese, L. Active contours without edges, IEEE Trans.Image. Process. Feb. 2001, 10(2), 266-277.
https://doi.org/10.1109/83.902291
3. Caselles, V. R. Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis. Feb. 1997, 22(1), 61-79.
https://doi.org/10.1023/A:1007979827043
4. Lankton, S. D.; Nain, A.; Yezzi, Tannenbaum, A. Hybrid geodesic region-based curve evolutions for image segmentation. In Proceedings of the Medical Imaging 2007: Physics of Medical Imaging; Hsieh, J., Flynn, M.J.,Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2007, 6510, 65104U
https://doi.org/10.1117/12.709700
5. Leventon, M.; Grimson, W.; Faugeras, O. Statistical Shape Influence in Geodesic Active Contours. In Proc. IEEE CVPR, 2000.
6. Dambreville, S.; Rathi, Y.; Tannenbaum, A. A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8), 1385-1399.
https://doi.org/10.1109/TPAMI.2007.70774
7. Bresson, X.; Vandergheynst, P.; Thirau, J.P. A priori information in image segmentation: Energy functional based on shape statistical model and image information. In Proc. IEEE Int. Conf. Image Processing, 2003, 425-428.
8. Cremers, D.; Soatto, S. A pseudo-distance for shape priors in level set segmentation. In, IEEE 2nd Int. Workshop on Variational, Geometric and Level Set Methods, N.Paragios (eds.), Nice, 2003, 169-176.
9. Cremers, D.; Osher, S.; Soatto, S. Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation. International Journal of Computer Vision, 2006, 69(3), 335-351.
https://doi.org/10.1007/s11263-006-7533-5
10. Kim, J.; Cetin, M.; Willsky, A. Nonparametric Shape Priors for Active Contour-Based Image Segmentation. Signal Processing, 2007, 87(12), 3021-3044.
https://doi.org/10.1016/j.sigpro.2007.05.026
11. Erdil, E.; Yildirim, S.; Cetin, M.; Tasdizen, T. Mcmc shape sampling for image segmentation with nonparametric shape priors. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, 411-419.
https://doi.org/10.1109/CVPR.2016.51
12. Cremers, D.; Osher, S. J.; Soatto, S. Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk. In: Pattern Recognition. Lecture Notes in Computer Science, 2004, 3175, 36-44.
https://doi.org/10.1007/978-3-540-28649-3_5