Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2021. Issue 49 (125)
Stochastic model of the gearbox pair vibration
Javorskyj I.M.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Bydgoszcz University of Sciences and Technology, Bydgoszcz, Poland
Yuzefovych R.M.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Lviv Polytechnic National University, Lviv
Lychak O.V.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Trokhym G.R.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Varyvoda M.Z.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2021.49.026
Keywords: periodically correlated random process, vibration, gearbox pair, hidden periodicities.
Cite as: Javorskyj I.M., Yuzefovych R.M., Lychak O.V., Trokhym G.R., Varyvoda M.Z.
Stochastic model of the gearbox pair vibration. Information Extraction and Processing. 2021, 49(125), 26-31. DOI:https://doi.org/10.15407/vidbir2021.49.026
Download
Abstract
The model of vibration signal of gearbox pair in the form of periodically correlated non-stationary random process is considered. It is shown that hidden periodicities in biperiodic correlated random process mean and covariance function, characterizing the vibrations of gearbox pair can be detected using the component and least square methods. Seven particular cases of the bi-rhythmic hidden periodicity for different modulation modes are analyzed.
References
1. Javorskyj, I. M. Mathematical models and analysis of stochastic oscillations. Nazarchuk, Z. T., Ed.; Physico-mechanical institute of NAS of Ukraine: Lviv, 2013. (in Ukrainian).
2. Javorskyj, I.; Mykhailyshyn, V. Probabilistic models and statistical analysis of stochastic oscillations, Pattern Recogn. Image. Anal. 1996, 6(4), 749-763.
3. Javorskyj, I.; Yuzefovych, R.; Kravets, I.; Matsko, I. Methods of periodically correlated random processes and their generalizations in Cyclostationarity: Theory and Methods. Lecture Notes in Mechanical Engineering, F. Chaari, J. Leskow, A. Sanches-Ramires (Eds.); Springer: New York, 2014, 73-93.
https://doi.org/10.1007/978-3-319-04187-2_6
4. Javorskyj, I.; Dzeryn, O.; Yuzefovych, R. Analysis of mean function discrete LSM-estimator for biperiodically nonstationary random signals, Math. Model. Comput. 2019, 6(1), 44-57.
https://doi.org/10.23939/mmc2019.01.044
5. McCormick, A.C.; Nandi, A.K. Cyclostationarity in rotating machine vibrations, Mech. Syst. Signal Process, 1998, 12(2), 225-242.
https://doi.org/10.1006/mssp.1997.0148
6. Capdessus, C.; Sidahmed, M.; Lacoume, J.L. Cyclostationary processes: Application in gear fault early diagnostics, Mech. Syst. Signal Process, 2000, 14(3), 371-385.
https://doi.org/10.1006/mssp.1999.1260
7. Antoni, J.; Bonnardot, F.; Raad, A.; El Badaoui, M. Cyclostationary modeling of rotating machine vibration signals, Mech. Syst. Signal Process, 2004, 18, 1285-1314.
https://doi.org/10.1016/S0888-3270(03)00088-8
8. Antoni, J. Cyclostationarity by examples, Mech. Syst. Signal Process, 2009, 23, 987-1036.
https://doi.org/10.1016/j.ymssp.2008.10.010
9. Randall, R.B.; Antoni, J. Rolling element bearing diagnostics - A tutorial, Mech. Syst. Signal Process, 2011, 25(2), 485-520.
https://doi.org/10.1016/j.ymssp.2010.07.017
10. Zimroz, R.; Bartelmus, W. Gearbox condition estimation using cyclostationary properties of vibration signal, Key Engineering Mater., 2009, 413(1), 471-478.
https://doi.org/10.4028/www.scientific.net/KEM.413-414.471
11. Hurd, H.L.; Miamee, A. Periodically Correlated Random Sequences: Spectral Theory and Practice, Wiley: New York, 2007.
https://doi.org/10.1002/9780470182833
12. Javorskyj, I.; Leskow, J.; Kravets, I.; Isayev, I.; Gajecka-Mirek, E. Linear filtration methods for statistical analysis of periodically correlated random processes - Part II: Harmonic series representation, Signal Process., 2011, 91, 2506-2519.
https://doi.org/10.1016/j.sigpro.2011.04.031