Home
|
Back to issue
|
ISSN 3041-1823. Information Extraction and Processing. 2024. Issue 52 (128)
Local image contrast enhancement based on power model of visual image perception
Vorobel R. A.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Berehulyak O. R.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Ivasenko I. B.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Lviv Polytechnic National University, Lviv
Mandziy T. S.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2024.52.095
Keywords:image processing, local contrast, power enhancement, visual perception of light.
Cite as: Vorobel R. A., Berehulyak O. R., Ivasenko I. B., Mandziy T. S. Local image contrast enhancement based on power model of visual image perception. Information Extraction and Processing. 2024, 52(128), 95-106. DOI:https://doi.org/10.15407/vidbir2024.52.095
Download
Abstract
The analysis of models of light perception by humans, which serve as the basis for building methods for improving the quality of images by enhancing their local contrasts, was carried out. It is shown that the expression for determining local contrast is the basis for building an algorithm for image quality improvement. Three types of local contrast are highlighted, in particular absolute, relative and weighted, and the technology of building a method of image quality enhancement using them is illustrated. A new method of image quality improvement, which is based on the power dependence of the response of the human visual system to light excitation, is described. The experimental study of its effectiveness, illustrated and confirmed by image quality assessment, is carried out.
References
1. Vorobel, R.; Ivasenko, I.; Berehulyak, O. Automatized computer system for evaluation of rust using modified single-scale retinex, In IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 2017, pp 1002-1006.
https://doi.org/10.1109/UKRCON.2017.8100401
2. Palenichka, R.M.; Zinterhof, P.; Rytsar, Y.B.; Ivasenko, I.B. Structure-adaptive image filtering using order statistics. Journal of Electronic Imaging. 1998, 7(2).
https://doi.org/10.1117/1.482650
3. Lisani, J.L. Adaptive local image enhancement based on logarithmic mappings. In IEEE Interna-tional Conference on Image Processing (ICIP), 2018.
https://doi.org/10.1109/ICIP.2018.8451655
4. Vijayalakshmi, D.; Nath, M.K.; Acharya, O.P. A Comprehensive Survey on Image Contrast Enhancement Techniques in Spatial Domain. Sensing and Imaging. 2020, 21, 40.
https://doi.org/10.1007/s11220-020-00305-3
5. Yavorskyy I.M.; Pochapskyy Ye.P.; Vorobel R.A.; Rusyn B.P. Information technologies of nondestructive testing. In Technical diagnosis of materials and structures; Nazarchuk Z.T., Ed.; Prostir-M, 2018.
6. Vorobel, R. Logarithmic Image Processing; Naukova Dumka, 2012.
7. Pratt, W.K. Digital Image Processing; Wiley, 2007.
https://doi.org/10.1002/0470097434
8. Mannos, J.L.; Sakrison, D.J. The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. on Inf. Theory, 1974, IT-20(4), 525-536.
https://doi.org/10.1109/TIT.1974.1055250
9. Cornsweet, T.N. Visual Perseption; Academic Press, 1970.
10. Priest, I.G.; Gibson, K.S.; McNicholas, H.J. An examination of the Munsell color system. 1. Spectral and total reflection on the Munsell scale of value. U.S. National Bureau Standards. Technical paper 167, 1920.
https://doi.org/10.6028/nbst.5318
11. Ladd, J.H.; Pinney, J.E. Empirical Relationships with the Muncell value scale. Proc. IRE (Correspondence), 1955, 43(9), 1137.
https://doi.org/10.1109/JRPROC.1955.277892
12. Mokrzycki, W.S.; Tatol, M. Colour difference delta E-A survey. Mach. Graph. Vis, 2011, 20(4), 383-411.
13. Liberini, S.; Rizzi, A. Munsell and Ostwald colour spaces: A comparison in the field of hair colouring. Color Research & Application, 2023, 48(1), 6-20.
https://doi.org/10.1002/col.22818
14. Vorobel, R.A. Logarithmic type image processing algebras, In International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, Kharkiv, Ukraine, 2010, 1-3.
https://doi.org/10.1109/MSMW.2010.5546157
15. Berehulyak, O.; Vorobel, R. The Algebraic Model with an Asymmetric Characteristic of Loga-rithmic Transformation, In IEEE 15th International Conference on Computer Sciences and Infor-mation Technologies (CSIT), Zbarazh, Ukraine, 2020, 119-122.
https://doi.org/10.1109/CSIT49958.2020.9321906
16. Sheikh, H.R.; Sabir, M.F.; Bovik, A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing. 2006, 15(11), 3441-3452.
https://doi.org/10.1109/TIP.2006.881959
17. Egiazarian, K.; Astola, J.; Ponomarenko, N.; Lukin, V.; Battisti F.; Carli, M. New full-reference quality metrics based on HSV. In Proc. of the Second International Workshop on Video Proces-sing and Quality Metrics, Scottsdale, USA, 2006, 4 p.
18. Ponomarenko, N. et al. Color image database for evaluation of image quality metrics. In Proc. IEEE 10thWorkshop on Multimedia Signal Processing. 2008, 403-408.
https://doi.org/10.1109/MMSP.2008.4665112
19. Bringier, B.; Richard, N.; Larabi M.-C.; Fernandez-Maloigne, C. No-reference perceptual quality assessment of color image. In Proc. 14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8 2006, 5 p.
20. Zhu T.; Karam, L. A no-reference objective image quality metric based on perceptually weighted local noise, EURASIP Journal Image Video Process. 2014, 1, 1-8.
https://doi.org/10.1186/1687-5281-2014-5
21. Choi, L.K.; Bovik, A.C. Video quality assessment accounting for temporal visual masking of local flicker. Signal Processing: image communication. 2018, 67, 182-198.
https://doi.org/10.1016/j.image.2018.06.009
22. Ding, K.; Ma, K.; Wang, S.; Simoncelli, E.P. Image quality assessment: Unifying structure and texture similarity. IEEE transactions on pattern analysis and machine intelligence. 2020, 44(5), 2567-2581.
https://doi.org/10.1109/TPAMI.2020.3045810
23. Saha, A.; Mishra, S.; Bovik, A.C. Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp 5846-5855.
https://doi.org/10.1109/CVPR52729.2023.00566
24. Berehulyak, O.; Vorobel, R.; Ivasenko, I. Color Image Enhancement by Logarithmic Transformation in Fuzzy Domain. In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2019, pp 1147-1151.
https://doi.org/10.1109/UKRCON.2019.8879936