Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2022. Issue 50 (126)
Demodulation of non-stationary random signal using Hilbert transform
Javorskyj I. M.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Bydgoszcz University of Sciences and Technology, Bydgoszcz, Poland
Yuzefovych R. M.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Lviv Polytechnic National University, Lviv
Lychak O. V.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Slyepko R. T.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Varyvoda M. Z.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2022.50.026
Keywords: narrow-band periodically non-stationary random signal, Hilbert transform, filtered signal, quadratures.
Cite as: Javorskyj I. M., Yuzefovych R. M., Lychak O. V., Slyepko R. T., Varyvoda M. Z. Demodulation of non-stationary random signal using Hilbert transform. Information Extraction and Processing. 2022, 50(126), 26-33. DOI:https://doi.org/10.15407/vidbir2022.50.026
Abstract
A narrow-band high frequency amplitude modulation as a model of vibration signal is considered. Use of Hilbert transform for the demodulation of periodically non-stationary random signal (PNRS) is discussed. Relations for spectral and covariance components of model signal, its Hilbert transform and cross-covariance components are obtained. Quadratures for modulation signal are extracted and analyzed. It is shown, that the Fourier coefficients of the auto-covariance functions of a signal and its Hilbert transform are the same and its cross-covariance functions differ only by a sign. The square of the modulus of the analytical signal is not a “squared envelope” in the known sense. A “squared envelope” in this case is a random process, whose mathematical expectation is equal to twice the variance of the raw signal. This results in an identity of cyclic spectrums of variances for analytic and raw signals. Thus, the Hilbert transform cannot be used directly as a demodulation procedure, and the “squared envelope” can be analyzed only as the implementation of a random process using PNVP methods. It is shown that band-pass filtering and the Hilbert transform can be used for extraction of modulating signal quadratures.
References
1. Dragan, Ya.P.; Rozhkov, V.A.; Javorskyj, I.N. Methods of probabilistic analysis of the rhythms of oceanological processes, Hydrometeoizdat, 1987. (In Russian)
2. Gardner, W.A. Cyclostationarity in Communications and Signal Processing; IEEE Press: New York, 1994.
3. Hurd, H.L.; Miamee, A. Periodically Correlated Random Sequences: Spectral Theory and Practice, Wiley: New York, 2007.
https://doi.org/10.1002/9780470182833
4. Antoni, J. Cyclostationarity by examples, Mech. Syst. Signal Process, 2009, 23, 987-1036.
https://doi.org/10.1016/j.ymssp.2008.10.010
5. Javorskyj, I.; Yuzefovych, R.; Matsko, I.; Kravets, I. The stochastic recurrence structure of geophysical phenomena. In: Cyclostationarity: Theory and Methods - II. CSTA 2014. Applied Condition Monitoring, 3, F. Chaari, J. Leskow, A. Napolitano, R. Zimroz, A. Wylomanska, A. Dudek (Eds); Springer, Cham, 2015, 55-88.
https://doi.org/10.1007/978-3-319-16330-7_4
6. Napolitano, A. Cyclostationarity Processes and Time Seres: Theory, Applications, and Generali-zations, Elsevier, Academic Press, 2020.
7. Capdessus, C.; Sidahmed, M.; Lacoume, J.L. Cyclostationary processes: Application in gear fault early diagnostics, Mech. Syst. Signal Process., 2000, 14, 371-385.
https://doi.org/10.1006/mssp.1999.1260
8. Antoniadis, I.; Glossiotis, G. Cyclostationary analysis of rolling-element bearing vibration signals, J. Sound Vib., 2001, 248, 829-845.
https://doi.org/10.1006/jsvi.2001.3815
9. Javorskyj, I.; Kravets, I.; Matsko, I.; Yuzefovych, R. Periodically correlated random processes: Application in early diagnostics of mechanical systems, Mech. Syst. Signal Process., 2017, 83, 406-438.
https://doi.org/10.1016/j.ymssp.2016.06.022
10. Wang, D.; Tse, P.W.; Tsui, K.L. An enhanced Kurtogram metho for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 2013, 35, 176-199.
https://doi.org/10.1016/j.ymssp.2012.10.003
11. Javorskyj, I., Kurapov, P., Yuzefovych, R. Covariance characteristics of narrowband periodically non-stationary random signals, Math. Model. Comput., 2019, 6, 276-288.
https://doi.org/10.23939/mmc2019.02.276
12. Borghesani, P.; Pennacchi, P.; Randall, R.B.; Sawalhi, N.; Ricci, R. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions, Mech. Syst. Signal Process., 2013, 36, 370-384.
https://doi.org/10.1016/j.ymssp.2012.11.001
13. Javorskyj, I.; Yuzefovych, R.; Matsko, I.; Kurapov, P. Hilbert transform of a periodically non-stationary random signal: Low-frequency modulation, Digit. Signal Process., 2021, 116, 103113.
https://doi.org/10.1016/j.dsp.2021.103113
14. McFadden, P.D.; Smith, J.D., Vibration Monitoring of Rolling Element Bearings by the High Frequency Resonance Technique - a Review", Tribol. Int., 1984, 17, 3-10.
https://doi.org/10.1016/0301-679X(84)90076-8
15. Ho, D.; Randall, R.B. Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals, Mech. Syst. Signal Process., 2000, 14, 763-788.
https://doi.org/10.1006/mssp.2000.1304
16. Randall, R.B.; Antoni, J. Rolling element bearing diagnostics - A tutorial, Mech. Syst. Signal Process., 2011, 25, 485-520.
https://doi.org/10.1016/j.ymssp.2010.07.017