Home
|
Back to issue
|
ISSN 0474-8662. Information Extraction and Processing. 2023. Issue 51 (127)
Implementation of Radon transformation by rotating 1D interferometer
Lozynskyy A. B.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Ivantyshyn O. L.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Rusyn B. P.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
https://doi.org/10.15407/vidbir2023.51.039
Keywords: 1D interferometer, synthesis of 3D interferometer, sinogram, angular intensity distribution.
Cite as: Lozynskyy A. B., Ivantyshyn O. L., Rusyn B. P. Implementation of Radon transformation by rotating 1D interferometer. Information Extraction and Processing. 2023, 51(127), 39-44. DOI:https://doi.org/10.15407/vidbir2023.51.039
Abstract
The use of interferometry to observe objects in three-dimensional space requires a corresponding rank of the system of interferometric base vectors. The paper considers one of the ways to solve such a problem using the rotation of a 1D interferometer at an angle to the rotation axis This, with the exception of special cases of parallelism or perpendicularity of the axes, makes it possible to form a consecutive 3D interferometer. Using the rotation of the Earth, such an interferometer performs Radon transform of the angular structure of the spatial image when observing sources far beyond the size of the interferometer base. For this, the elements of the interferometer should be placed at different latitudes. The obtained analytical expressions show that the two-dimensional representation of one-dimensional projections as a function of the rotation angle then takes the form of a sinogram. A rotating 1D interferometer can be used in a number of fields of science and technology, for example, to solve location problems, in ultrasonic de¬fectoscopy, in technical vision systems, in radio astronomy, etc.
References
1. Thompson, A.R.; Moran, J.M.; Swenson, G.W. Jr. Interferometry and Synthesis in Radio Astronomy, 3rd ed.; Springer, 2017.
https://doi.org/10.1007/978-3-319-44431-4
2. Scaife, A.M.M. Big telescope, big data: towards exascale with the Square Kilometre Array. Phil. Trans. R. Soc. 2019, id. A.3782019006020190060.
https://doi.org/10.1098/rsta.2019.0060
3. Schwab, F.R. Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry. The Astronomical Journal. 1984, 89, 1076-1081.
https://doi.org/10.1086/113605
4. Taylor, G.; Carilli, C.; Perley, R. Synthesis imaging in radio astronomy II; ASP Conference Series, Vol. 180, 1999.
5. Shopbell, P.; Britton, M.; Ebert, R. Astronomical Data Analysis Software and Systems XIV. Astronomical Society of the Pacific Conference Series. Vol. 347. 2005.
6. Cornwell, T.J.; Perley, R.A. Radio-interferometric imaging of very large fields - The problem of non-coplanar arrays. Astronomy and Astrophysics. 1992, 261, 353-364.
7. Bhatnagar, S.; Rau, U.; Golap, K. Wide-field wide-band interferometric imaging: the WB a-projection and hybrid algorithms. The Astrophysical Journal. 2013, 770, 91.
https://doi.org/10.1088/0004-637X/770/2/91
8. Dabbech, A.; Terris, M.; Jackson, A.; Ramatsoku, M.; Smirnov, O. M.; Wiaux, Y. First AI for Deep Super-resolution Wide-field Imaging in Radio Astronomy: Unveiling Structure in ESO 137-006. The Astrophysical Journal Letters. 2022, 939, L4.
https://doi.org/10.3847/2041-8213/ac98af
9. Lozynskyy, A.; Ivantyshyn, O.; Rusyn, B. Using multi-position interferometry to determine the position of objects. Information and Communication Technologies, Electronic Engineering. 2022, 2, 52-60.
https://doi.org/10.23939/ictee2022.01.052
10. Lozynskyy, A.; Rusyn, B.; Ivantyshyn, O. 1-D Interferometer in 3-D space and Radon transform. Electronics and information technologies. 2023, 22, 3-14.
https://doi.org/10.30970/eli.22.1
11. Natterer, F. The Mathematics of Computerized Tomography; John Wiley & Sons: New York 1986.
https://doi.org/10.1007/978-3-663-01409-6