Home
|
Back to issue
|
ISSN 3041-1823. Information Extraction and Processing. 2024. Issue 52 (128)
The covariance analysis of the periodically non-stationary random signal with narrow-band modulation of carrier harmonics
Javorskyj I. M.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Bydgoszcz University of Sciences and Technology, Bydgoszcz, Poland
Yuzefovych R. M.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Lviv Polytechnic National University, Lviv
Lychak O. V.
Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
Khmil R. I.
Lviv Polytechnic National University, Lviv
https://doi.org/10.15407/vidbir2024.52.019
Keywords: periodically non-stationary random processes, vibration signal, covariance analysis.
Cite as: Javorskyj I. M., Yuzefovych R. M., Lychak O. V., Khmil R. I. The covariance analysis of the periodically non-stationary random signal with narrow-band modulation of carrier harmonics. Information Extraction and Processing. 2024, 52(128), 19-26. DOI:https://doi.org/10.15407/vidbir2024.52.019
Abstract
The periodically non-stationary random signals (PNRSs), whose carrier harmonics are mo-dulated by jointly stationary high-frequency random processes are analyzed. A representation of the signal in the form of a superposition of high-frequency components is obtained and it is shown that these components are jointly periodically non-stationary random processes. The random process is periodically non-stationary of the second order only in the case when some of the cross-covariance functions of its modulation processes are not equal to zero. The correlations of the PNRP spectral harmonics and the correlations of the modulating processes in series representation are equivalent. Evaluating the specific features of the auto- and cross-covariances for modulating processes as well as contribution of each pair to the covariance component values allows us to detect defects at early stages.
References
1. Dragan Y.; Javorskyj I. Rhythmics of sea waving and underwater acoustic signals; Naukova Dumka, 1982 (in Russian).
2. Gardner, W.A. Cyclostationarity in Communications and Signal Processing; IEEE Press, 1994.
3. Antoni, J. Cyclostationarity by examples, Mech. Syst. Signal Process., 2009, 23, 987-1036.
https://doi.org/10.1016/j.ymssp.2008.10.010
4. Javorskyj, I.; Yuzefovych, R.; Matsko, I.; Kurapov, P. Hilbert transform of a periodically non-stationary random signal: Low-frequency modulation, Digit. Signal Process., 2021, 116, 103113.
https://doi.org/10.1016/j.dsp.2021.103113
5. McFadden, P.D.; Smith, J.D. Vibration monitoring of rolling element bearings by the high frequency resonance technique - A review, Tribol. Int., 1984, 17, 3-10.
https://doi.org/10.1016/0301-679X(84)90076-8
6. Ho, D.; Randall, R.B. Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals, Mech. Syst. Signal Process., 2000, 14, 763-788.
https://doi.org/10.1006/mssp.2000.1304
7. Antoni, J. Cyclic spectral analysis of rolling-element bearing signals: Facts and Fictions, J. Sound Vib., 2007, 304, 497-529.
https://doi.org/10.1016/j.jsv.2007.02.029
8. Randall, R.B.; Antoni, J. Rolling element bearing diagnostics - A tutorial, Mech. Syst. Signal Process., 2011, 25, 485-520.
https://doi.org/10.1016/j.ymssp.2010.07.017
9. Napolitano, A. Cyclostationary processes and time series: Theory, applications, and generali-zations; Elsevier, 2020.
10. Mykhailyshyn, V.; Javorskyj, I.; Vasylyna, Y.; Drabych, O.; Isaev, I. Probabilistic models and statistical methods for the analysis of vibration signals in the problems of diagnostics of machines and structures, Materials Science, 1997, 33, 655-672.
https://doi.org/10.1007/BF02537594
11. McCormick, A.C.; Nandi, A.K. Cyclostationarity in rotating machine vibrations, Mech. Syst. Signal Process., 1998, 12, 225-242.
https://doi.org/10.1006/mssp.1997.0148
12. Capdessus, C.; Sidahmed, M.; Lacoume, J.L. Cyclostationary processes: Application in gear fault early diagnostics, Mech. Syst. Signal Process., 2000, 14, 371-385.
https://doi.org/10.1006/mssp.1999.1260
13. Antoniadis, I.; Glossiotis, G. Cyclostationary analysis of rolling-element bearing vibration signals, J. Sound Vib., 2001, 248, 829-845.
https://doi.org/10.1006/jsvi.2001.3815
14. Antoni, J.; Bonnardot, F.; Raad, A.; El Badaoui, M. Cyclostationary modeling of rotating machine vibration signals, Mech. Syst. Signal Process., 2004, 18, 1285-1314.
https://doi.org/10.1016/S0888-3270(03)00088-8
15. Antoni, J.; Randall, R.B. A stochastic model for simulation and diagnostics of rolling element bearings with localized faults, ASME J. Vib. Acoust., 2003, 125, 282-289
https://doi.org/10.1115/1.1569940
16. Javorskyj, I.; Kravets, I.; Matsko, I.; Yuzefovych, R. Periodically correlated random processes: Application in early diagnostics of mechanical systems, Mech. Syst. Signal Process., 2017, 83, 406-438.
https://doi.org/10.1016/j.ymssp.2016.06.022
17. Borghesani, P.; Pennacchi, P.; Ricci, R.; Chatterton, S. Testing second order cyclostationarity in the squared envelope spectrum of non-white vibration signals, Mech. Syst. Signal Process., 2013, 40, 38-55.
https://doi.org/10.1016/j.ymssp.2013.05.012
18. Wang, H. Early detection of gear tooth cracking using the resonance demodulation technique, Mech. Syst. Signal Process., 2001, 15, 887-903.
https://doi.org/10.1006/mssp.2001.1416
19. Kay, S.M. Modern spectral estimation: Theory and application. Prentice Hall, 1988.
20. Randall, R.B.; Sawalhi, N.: Coats, M. A comparison of methods for separation of deterministic and random signals, Int. J. Cond. Monitoring, 2011, 1, 11-19.
https://doi.org/10.1784/204764211798089048
21. Borghesani, P.; Pennacchi, P.; Randall, R.B.; Sawalhi, N.; Ricci, R. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions, Mech. Syst. Signal Process., 2013, 36, 370-384.
https://doi.org/10.1016/j.ymssp.2012.11.001
22. Hurd, H.L.; Miamee, A. Periodically Correlated Random Sequences: Spectral Theory and Prac-tice; Wiley, 2007.
https://doi.org/10.1002/9780470182833
23. Antoni, J.; Borghesani, P. A statistical methodology for the design of condition indicators, Mech. Syst. Signal Process., 2019, 114, 290-327.
https://doi.org/10.1016/j.ymssp.2018.05.012
24. Wiener, N. Generalized harmonic analysis, Acta Math., 1930, 55, 117-258.
https://doi.org/10.1007/BF02546511
25. Javorskyj, I.; Isayev, I.; Majewski, J.; Yuzefovych, R. Component covariance analysis for periodically correlated random processes, Signal Process., 2010, 90(4), 1083-1102.
https://doi.org/10.1016/j.sigpro.2009.07.031